Publications by authors named "Saeed Nourmohammadi"

Importance: Tumor-infiltrating lymphocytes (TILs) are a provocative biomarker in melanoma, influencing diagnosis, prognosis, and immunotherapy outcomes; however, traditional pathologist-read TIL assessment on hematoxylin and eosin-stained slides is prone to interobserver variability, leading to inconsistent clinical decisions. Therefore, development of newer TIL scoring approaches that produce more reliable and consistent readouts is important.

Objective: To evaluate the analytical and clinical validity of a machine learning algorithm for TIL quantification in melanoma compared with traditional pathologist-read methods.

View Article and Find Full Text PDF

The breast tissue microbiome has been increasingly recognized as a potential contributor to breast cancer development and progression. However, inconsistencies in microbial composition across studies have hindered the identification of definitive microbial signatures. We conducted a systematic review and meta-analysis of 11 studies using 16S rRNA sequencing to characterize the bacterial microbiome in 1260 fresh breast tissue samples, including normal, mastitis-affected, benign, cancer-adjacent, and cancerous tissues.

View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) is an aggressive subtype with limited treatment options and high resistance to chemotherapy. Doxorubicin is commonly used, but its efficacy is limited by variable sensitivity and resistance. Bacopaside II, a saponin compound, has shown anti-cancer potential.

View Article and Find Full Text PDF

Plant cation-chloride cotransporters (CCCs) are proposed to be Na-K-2Cl transporting membrane proteins, although evolutionarily, they associate more closely with K-Cl cotransporters (KCCs). Here, we investigated grapevine ( L.) VvCCC using 3D protein modeling, bioinformatics, and electrophysiology with a heterologously expressed protein.

View Article and Find Full Text PDF

Aquaporin (AQP) channels found in all domains of life are transmembrane proteins which mediate passive transport of water, glycerol, signaling molecules, metabolites, and charged solutes. Discovery of new classes of ion-conducting AQP channels has been slow, likely reflecting time- and labor-intensive methods required for traditional electrophysiology. Work here defines a sensitive mass-throughput system for detecting AQP ion channels, identified by rescue of cell growth in the K+-transport-defective yeast strain CY162 following genetic complementation with heterologously expressed cation-permeable channels, using the well characterized human AQP1 channel for proof of concept.

View Article and Find Full Text PDF

Purpose: Toll-like receptor 4 (TLR4) is increasingly recognized for its ability to govern the etiology and prognostic outcomes of colorectal cancer (CRC) due to its profound immunomodulatory capacity. Despite widespread interest in TLR4 and CRC, no clear analysis of current literature and data exists. Therefore, translational advances have failed to move beyond conceptual ideas and suggestions.

View Article and Find Full Text PDF

Background: The prognostic value of tumor-infiltrating lymphocytes (TILs) assessed by machine learning algorithms in melanoma patients has been previously demonstrated but has not been widely adopted in the clinic. We evaluated the prognostic value of objective automated electronic TILs (eTILs) quantification to define a subset of melanoma patients with a low risk of relapse after surgical treatment.

Methods: We analyzed data for 785 patients from 5 independent cohorts from multiple institutions to validate our previous finding that automated TIL score is prognostic in clinically-localized primary melanoma patients.

View Article and Find Full Text PDF
Article Synopsis
  • Aquaporins (AQPs) are specialized proteins that allow water and certain solutes to pass through cell membranes, with their ion-conducting properties first identified in AQP0 from bovine lenses.
  • Ongoing research focuses on the specific amino acids dictating solute permeability and the role of structural features like charged and hydrophobic residue rings, as well as how lipid environments influence AQP performance.
  • These AQPs are implicated in various biological functions, such as cell movement, pH regulation, and nutrient uptake, and advancements in computational tools and high-throughput assays may lead to groundbreaking discoveries in AQP function and interaction.
View Article and Find Full Text PDF
Article Synopsis
  • In sickle cell disease, red blood cells deform under low oxygen, driven by ion leaks and dehydration, leading to various complications.
  • Previous research identified 5-HMF as a compound that reduces sickling by stabilizing hemoglobin and blocking the cationic leak in RBCs, but the precise mechanism was unclear until this study.
  • The study found that Aquaporin-1 (AQP1) channels are significantly inhibited by various compounds, with 5-PMFC being the most effective, suggesting that targeting AQP1 along with hemoglobin modifiers could enhance treatments for sickle cell disease.
View Article and Find Full Text PDF

Aquaporin-1 (AQP1) dual water and ion channels enhance migration and invasion when upregulated in leading edges of certain classes of cancer cells. Work here identifies structurally related furan compounds as novel inhibitors of AQP1 ion channels. 5-Hydroxymethyl-2-furfural (5HMF), a component of natural medicinal honeys, and three structurally related compounds, 5-nitro-2-furoic acid (5NFA), 5-acetoxymethyl-2-furaldehyde (5AMF), and methyl-5-nitro-2-furoate (M5NF), were analyzed for effects on water and ion channel activities of human AQP1 channels expressed in oocytes.

View Article and Find Full Text PDF

Aquaporin-1 (AQP1) has been proposed as a dual water and cation channel that when upregulated in cancers enhances cell migration rates; however, the mechanism remains unknown. Previous work identified AqB011 as an inhibitor of the gated human AQP1 cation conductance, and bacopaside II as a blocker of AQP1 water pores. In two colorectal adenocarcinoma cell lines, high levels of AQP1 transcript were confirmed in HT29, and low levels in SW480 cells, by quantitative PCR (polymerase chain reaction).

View Article and Find Full Text PDF

Traditional Chinese Medicines are promising sources of new agents for controlling cancer metastasis. Compound Kushen Injection (CKI), prepared from medicinal plants and , disrupts cell cycle and induces apoptosis in breast cancer; however, effects on migration and invasion remained unknown. CKI, fractionated mixtures, and isolated components were tested in migration assays with colon (HT-29, SW-480, DLD-1), brain (U87-MG, U251-MG), and breast (MDA-MB-231) cancer cell lines.

View Article and Find Full Text PDF

This is the first work to use a newly designed Li-selective photoswitchable probe Sabrina Heng Lithium (SHL) in living colon cancer cells to noninvasively monitor cation channel activity in real time by the appearance of lithium hot spots detected by confocal microscopy. Punctate Li hot spots are clustered in the lamellipodial leading edges of HT29 human colon cancer cells and are colocalized with aquaporin-1 (AQP1) channels. AQP1 is a dual water and cyclic-nucleotide-gated cation channel located in lamellipodia and is essential for rapid cell migration in a subset of aggressive cancers.

View Article and Find Full Text PDF

Aquaporins are integral proteins that facilitate the transmembrane transport of water and small solutes. In addition to enabling water flux, mammalian Aquaporin-1 (AQP1) channels activated by cyclic GMP can carry non-selective monovalent cation currents, selectively blocked by arylsulfonamide compounds AqB007 (IC 170 μM) and AqB011 (IC 14 μM). models suggested that ligand docking might involve the cytoplasmic loop D (between AQP1 transmembrane domains 4 and 5), but the predicted site of interaction remained to be tested.

View Article and Find Full Text PDF

Drought and salinity are two main abiotic stressors that can disrupt plant growth and survival. Various biotechnological approaches have been used to alleviate the problem of drought stress by improving water stress resistance in forestry and agriculture. The drought sensitive 1 (DRS1) gene acts as a regulator of drought stress, identified in human, yeast and some model plants, such as Arabidopsis thaliana, but there have been no reports of DRS1 transformation in poplar plants to date.

View Article and Find Full Text PDF

Aquaporin (AQP) channels in the major intrinsic protein (MIP) family are known to facilitate transmembrane water fluxes in prokaryotes and eukaryotes. Some classes of AQPs also conduct ions, glycerol, urea, CO , nitric oxide, and other small solutes. Ion channel activity has been demonstrated for mammalian AQPs 0, 1, 6, Drosophila Big Brain (BIB), soybean nodulin 26, and rockcress AtPIP2;1.

View Article and Find Full Text PDF

Aquaporins (AQPs) are known to facilitate water and solute fluxes across barrier membranes. An increasing number of AQPs are being found to serve as ion channels. Ion and water permeability of selected plant and animal AQPs (plant AtPIP2;1, AtPIP2;2, AtPIP2;7, human HsAQP1, rat RnAQP4, RnAQP5, and fly DmBIB) were expressed in oocytes and examined in chelator-buffered salines to evaluate the effects of divalent cations (Ca, Mg, Ba and Cd) on ionic conductances.

View Article and Find Full Text PDF