The breast tissue microbiome has been increasingly recognized as a potential contributor to breast cancer development and progression. However, inconsistencies in microbial composition across studies have hindered the identification of definitive microbial signatures. We conducted a systematic review and meta-analysis of 11 studies using 16S rRNA sequencing to characterize the bacterial microbiome in 1260 fresh breast tissue samples, including normal, mastitis-affected, benign, cancer-adjacent, and cancerous tissues.
View Article and Find Full Text PDFBiomolecules
January 2025
Background: Triple-negative breast cancer (TNBC) is an aggressive subtype with limited treatment options and high resistance to chemotherapy. Doxorubicin is commonly used, but its efficacy is limited by variable sensitivity and resistance. Bacopaside II, a saponin compound, has shown anti-cancer potential.
View Article and Find Full Text PDFWe previously showed how triterpene saponin bacopaside (bac) II, purified from the medicinal herb , induced cell death in colorectal cancer cell lines and reduced endothelial cell migration and tube formation, and further demonstrated a synergistic effect of a combination of bac I and bac II on the inhibition of breast cancer cell line growth. Here, we assessed the effects of bac I and II on the colorectal cancer HT-29 cell line, and mouse (2H-11) and human umbilical vein endothelial cell (HUVEC) lines, measuring outcomes including cell viability, proliferation, migration, tube formation, apoptosis, cytosolic Ca levels and plasma membrane integrity. Combined bac I and II, each applied at concentrations below IC values, caused a synergistic reduction of the viability and proliferation of HT-29 and endothelial cells, and impaired the migration of HT-29 and tube formation of endothelial cells.
View Article and Find Full Text PDF