Publications by authors named "Rodney B Luwor"

Several immunoregulatory or immune checkpoint receptors including T cell immunoglobulin and mucin domain 3 (TIM-3) have been implicated in glioblastoma progression. Rigorous investigation over the last decade has elucidated TIM-3 as a key player in inhibiting immune cell activation and several key associated molecules have been identified both upstream and downstream that mediate immune cell dysfunction mechanistically. However, despite several reviews being published on other immune checkpoint molecules such as PD-1 and CTLA-4 in the glioblastoma setting, no such extensive review exists that specifically focuses on the role of TIM-3 in glioblastoma progression and immunosuppression.

View Article and Find Full Text PDF

Glioblastoma is the most aggressive type of brain cancer, but treatment improvements for glioblastoma patients remain stagnated for over 20 years. This is despite the large number of clinical trials that have attempted to replicate the success of therapeutics developed for other cancer types. This discrepancy highlights the urgent need to decipher the unique biology of glioblastomas.

View Article and Find Full Text PDF

Inhibitory receptors are critical for regulating immune cell function. In cancer, these receptors are often over-expressed on the cell surface of T and NK cells, leading to reduced anti-tumor activity. Here, through the analysis of 11 commonly studied checkpoint and inhibitory receptors, we discern that only (TIM3) and (CD39) display significantly greater gene expression in glioblastoma compared to normal brain and lower grade glioma.

View Article and Find Full Text PDF
Article Synopsis
  • * This review focuses on how TGF-β interacts with monocytes and macrophages in the tumor microenvironment, impacting their activities and contributing to immunosuppression that aids tumor progression.
  • * The article also highlights ongoing clinical efforts aimed at targeting TGF-β in cancer treatment, showing potential benefits in the field of immuno-oncology.
View Article and Find Full Text PDF
Article Synopsis
  • Cell and gene therapy are new medical techniques that try to fix diseases by changing the genes that cause them.
  • CRISPR is a powerful tool used in these therapies that allows scientists to edit genes very precisely.
  • The chapter talks about how CRISPR works, its different forms and delivery methods, and new ways it's being used in medicine to treat illnesses.
View Article and Find Full Text PDF

Gliomas are highly malignant brain tumours that remain refractory to treatment. Treatment is typically surgical intervention followed by concomitant temozolomide and radiotherapy; however patient prognosis remains poor. Voltage gated ion channels have emerged as novel targets in cancer therapy and inhibition of a potassium selective subtype (hERG, Kv11.

View Article and Find Full Text PDF

The independent diagnostic value of inflammatory markers neutrophil to lymphocyte ratio (NLR) and platelet to lymphocyte ratio (PLR) and the diagnostic efficacy of NLR, derived neutrophil to lymphocyte ratio (dNLR), PLR, and lymphocyte-to-monocyte ratio (LMR) in glioma cases remain unclear. We investigated the correlation of preoperative peripheral blood inflammatory markers with pathological grade, Ki-67 Proliferation Index, and gene phenotype in patients with glioma, focusing on tumor grade and prognosis. We retrospectively analyzed the clinical, pathological, and laboratory data of 334 patients with glioma with varying grades and 345 with World Health Organization (WHO I) meningioma who underwent initial surgery at the Affiliated Hospital of Jining Medical University from December 2019 to December 2021.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is the third leading cause of cancer-related death in the world. Multiple evidence suggests that there is an association between excess fat consumption and the risk of CRC. The long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential for human health, and both and studies have shown that these fatty acids can prevent CRC development through various molecular mechanisms.

View Article and Find Full Text PDF

Transforming growth factor-β (TGF-β) is a pleiotropic cytokine essential for multiple biological processes, including the regulation of inflammatory and immune responses. One of the important functions of TGF-β is the suppression of the proinflammatory cytokine interleukin-12 (IL-12), which is crucial for mounting an anti-tumorigenic response. Although the regulation of the IL-12p40 subunit (encoded by the IL-12B gene) of IL-12 has been extensively investigated, the knowledge of IL-12p35 (encoded by IL-12A gene) subunit regulation is relatively limited.

View Article and Find Full Text PDF

Background: Glioblastoma is characterised by extensive infiltration into the brain parenchyma, leading to inevitable tumor recurrence and therapeutic failure. Future treatments will need to target the specific biology of tumour recurrence, but our current understanding of the underlying mechanisms is limited. Significantly, there is a lack of available methods and models that are tailored to the examination of tumour recurrence.

View Article and Find Full Text PDF

Glioblastoma is highly proliferative and invasive. However, the regulatory cytokine networks that promote glioblastoma cell proliferation and invasion into other areas of the brain are not fully defined. In the present study, we define a critical role for the IL-11/IL-11Rα signalling axis in glioblastoma proliferation, epithelial to mesenchymal transition, and invasion.

View Article and Find Full Text PDF

Transforming growth factor β (TGFβ) is a multifunctional cytokine, and its signalling responses are exerted via integrated intracellular pathways and complex regulatory mechanisms. Due to its high potency, TGFβ signalling is tightly controlled under normal circumstances, while its dysregulation in cancer favours metastasis. The recognised potential of TGFβ as a therapeutic target led to emerging development of anti-TGFβ reagents with preclinical success, yet these therapeutics failed to recapitulate their efficacy in experimental settings.

View Article and Find Full Text PDF

Glioblastoma cells adapt to changes in glucose availability through metabolic plasticity allowing for cell survival and continued progression in low-glucose concentrations. However, the regulatory cytokine networks that govern the ability to survive in glucose-starved conditions are not fully defined. In the present study, we define a critical role for the IL-11/IL-11Rα signalling axis in glioblastoma survival, proliferation and invasion when cells are starved of glucose.

View Article and Find Full Text PDF

Glioblastoma is the most aggressive brain tumour with short survival, partly due to resistance to conventional therapy. Glioma stem cells (GSC) are likely to be involved in treatment resistance, by releasing extracellular vesicles (EVs) containing specific molecular cargoes. Here, we studied the EVs secreted by glioma stem cells (GSC-EVs) and their effects on radiation resistance and glioma progression.

View Article and Find Full Text PDF

Background: Our in vitro studies demonstrated that krill oil (KO) has anti-cancer potential. This study aimed to compare the anti-cancer effects of KO with a commonly used chemotherapeutic drug, oxaliplatin and to identify the molecular mechanisms associated with KO supplementation in a mouse model of colorectal cancer (CRC).

Methods: Thirty-six male Balb/c mice were randomly divided into six groups.

View Article and Find Full Text PDF

Background: We have previously reported that the free fatty acid extract (FFAE) of krill oil (KO) significantly inhibits the proliferation and migration, and induces apoptosis of colorectal cancer (CRC) cells. This study aimed to investigate the in vivo efficacy of various doses of KO supplementation on the inhibition of CRC tumour growth, molecular markers of proliferation, angiogenesis, apoptosis, the epidermal growth factor receptor (EGFR) and its downstream molecular signalling.

Methods: Male Balb/c mice were randomly divided into four groups with five in each group.

View Article and Find Full Text PDF

Adherens junctions physically link two cells at their contact interface via extracellular binding between cadherin molecules and intracellular interactions between cadherins and the actin cytoskeleton. Cadherin and actomyosin cytoskeletal dynamics are regulated reciprocally by mechanical and chemical signals, which subsequently determine the strength of cell-cell adhesions and the emergent organization and stiffness of the tissues they form. However, an understanding of the integrated system is lacking.

View Article and Find Full Text PDF

L-sulforaphane (LSF) is an isothiocyanate derived from cruciferous vegetables that has long been known for its anticarcinogenic, antioxidant and anti-inflammatory effects. LSF also possesses antimicrobial properties, although the evidence for this is limited. Respiratory pathogens, such as Streptococcus pneumoniae, Haemophilus influenzae, Streptococcus pyogenes and respiratory syncytial virus (RSV), are leading global causes of illness and death among children aged under five years, particularly in resource-poor countries where access to vaccines are limited or, in the case of S.

View Article and Find Full Text PDF

Cetuximab is a common treatment option for patients with wild-type K-Ras colorectal carcinoma. However, patients often display intrinsic resistance or acquire resistance to cetuximab following treatment. Here we generate two human CRC cells with acquired resistance to cetuximab that are derived from cetuximab-sensitive parental cell lines.

View Article and Find Full Text PDF
Article Synopsis
  • RCN1 is a protein located in the endoplasmic reticulum that helps cells survive during stressful conditions, and its expression is linked to poor survival rates in glioblastoma patients.
  • High levels of RCN1 are found in glioblastoma cells expressing the EGFRvIII receptor, suggesting that this receptor may regulate RCN1 expression.
  • Knockdown of RCN1 reduces cell viability under stress, while increasing RCN1 levels enhances survival, indicating that the EGFRvIII-RCN1 relationship aids cell survival by impacting key stress markers and promoting anti-apoptotic signals.
View Article and Find Full Text PDF

The dietary isothiocyanate L-sulforaphane (LSF), derived from cruciferous vegetables, is reported to have several beneficial biological properties, including anti-inflammatory and immunomodulatory effects. However, there is limited data on how LSF modulates these effects in human immune cells. The present study was designed to investigate the immunomodulatory effects of LSF (10 µM and 50 µM) on peripheral blood mononuclear cell (PBMC) populations and cytokine secretion in healthy adult volunteers ( = 14), in the presence or absence of bacterial (lipopolysaccharide) and viral (imiquimod) toll-like receptor (TLRs) stimulations.

View Article and Find Full Text PDF

Background: The currently available treatments for colorectal cancer (CRC) are often associated with serious side-effects. Therefore, the development of a novel nutraceutical agent may provide an alternative complementary therapy for CRC. Overexpression of the epidermal growth factor receptor (EGFR) associates with a range of cancers while downregulation of EGFR signalling can inhibit cancer growth.

View Article and Find Full Text PDF

Despite aggressive treatment with temozolomide and radiotherapy and extensive research into alternative therapies there has been little improvement in Glioblastoma patient survival. Median survival time remains between 12 and 15 months mainly due to treatment resistance and tumor recurrence. In this study, we aimed to explore the underlying mechanisms behind treatment resistance and the lack of success with anti-EGFR therapy in the clinic.

View Article and Find Full Text PDF

Cubosomes with an internal three-dimensional (3D) periodic and porous particulate nanostructure have emerged as a promising drug delivery system for hydrophobic small molecules as well as large biomolecules over the past several decades. Limited understanding of their safety profiles and biodistribution, however, hinders clinical translation. This study used monoolein-based cubosomes stabilized by Pluronic F127 and 1,2-distearoyl--glycero-3-phosphoethanolamine--[maleimide(polyethylene glycol)] polymers to encapsulate paclitaxel (PTX) as a model drug and investigated the cytotoxicity, acute response, and whole body biodistribution of the developed nanoparticles.

View Article and Find Full Text PDF