Publications by authors named "Richard W Pierce"

Endothelial cells (ECs) integrate immune and vascular functions to promote host defense against pathogens. While previously studied as forming passive flow conduits, ECs are now recognized as active contributors to maladaptive inflammation. During acute infection, ECs may promote tissue pathologies, including hypoxia, acidosis, electrolyte disturbances, and capillary barrier breakdown.

View Article and Find Full Text PDF

Improving the performance of nanocarriers remains a major challenge in the clinical translation of nanomedicine. Efforts to optimize nanoparticle formulations typically rely on tuning the surface density and thickness of stealthy polymer coatings, such as poly(ethylene glycol) (PEG). Here, we show that modulating the surface topography of PEGylated nanoparticles using bottlebrush block copolymers (BBCPs) significantly enhances circulation and tumor accumulation, providing an alternative strategy to improve nanoparticle coatings.

View Article and Find Full Text PDF

Angiopoietin-like 4 (ANGPTL4) is known to regulate various cellular and systemic functions. However, its cell-specific role in endothelial cells (ECs) function and metabolic homeostasis remains to be elucidated. Here, using endothelial-specific Angptl4 knock-out mice (Angptl4), and transcriptomics and metabolic flux analysis, we demonstrate that ANGPTL4 is required for maintaining EC metabolic function vital for vascular permeability and angiogenesis.

View Article and Find Full Text PDF

Acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), cause severe endothelial dysfunction in the lung, and vascular endothelial growth factor (VEGF) is elevated in ARDS. We found that the levels of a VEGF-regulated microRNA, microRNA-1 (miR-1), were reduced in the lung endothelium after acute injury. Pulmonary endothelial cell-specific (EC-specific) overexpression of miR-1 protected the lung against cell death and barrier dysfunction in both murine and human models and increased the survival of mice after pneumonia-induced ALI.

View Article and Find Full Text PDF
Article Synopsis
  • Over the past century, pandemics like COVID-19 highlight the need for prepared and coordinated responses to disease outbreaks.
  • A new machine learning model was created to predict COVID-19 severity and hospital stays by analyzing plasma data from patients and healthy individuals, which identifies key biomarkers for triage.
  • Significant findings include that higher eosinophil levels are linked to worse outcomes and lower serotonin levels are seen in critical cases; this model could be adapted for future viruses to improve resource allocation and patient care.
View Article and Find Full Text PDF

Necrotizing enterocolitis (NEC) is a gastrointestinal complication of premature infants with high rates of morbidity and mortality. A comprehensive view of the cellular changes and aberrant interactions that underlie NEC is lacking. This study aimed at filling in this gap.

View Article and Find Full Text PDF

: We aim to comprehensively describe the transcriptional activity and signaling of pulmonary parenchymal and immune cells before and after cardiopulmonary bypass (CPB) by using a multi-omic approach coupled with functional cellular assays. We hypothesize that key signaling pathways from specific cells within the lung alter pulmonary endothelial cell function resulting in worsening or improving disease. : We collected serial tracheobronchial lavage samples from intubated patients less than 2-years-old undergoing surgery with CPB.

View Article and Find Full Text PDF

Overwhelming inflammation in the setting of acute critical illness induces capillary leak resulting in hypovolemia, edema, tissue dysoxia, organ failure and even death. The tight junction (TJ)-dependent capillary barrier is regulated by small GTPases, but the specific regulatory molecules most active in this vascular segment under such circumstances are not well described. We set out to identify GTPase regulatory molecules specific to endothelial cells (EC) that form TJs.

View Article and Find Full Text PDF

Objectives: To review, analyze, and synthesize the literature on endothelial dysfunction in critically ill children with multiple organ dysfunction syndrome and to develop a consensus biomarker-based definition and diagnostic criteria.

Data Sources: Electronic searches of PubMed and Embase were conducted from January 1992 to January 2020, using a combination of medical subject heading terms and key words to define concepts of endothelial dysfunction, pediatric critical illness, and outcomes.

Study Selection: Studies were included if they evaluated critically ill children with endothelial dysfunction, evaluated performance characteristics of assessment/scoring tools to screen for endothelial dysfunction, and assessed outcomes related to mortality, functional status, organ-specific outcomes, or other patient-centered outcomes.

View Article and Find Full Text PDF

Prior criteria for organ dysfunction in critically ill children were based mainly on expert opinion. We convened the Pediatric Organ Dysfunction Information Update Mandate (PODIUM) expert panel to summarize data characterizing single and multiple organ dysfunction and to derive contemporary criteria for pediatric organ dysfunction. The panel was composed of 88 members representing 47 institutions and 7 countries.

View Article and Find Full Text PDF

Background: Cellular diversity of the lung endothelium has not been systematically characterized in humans. We provide a reference atlas of human lung endothelial cells (ECs) to facilitate a better understanding of the phenotypic diversity and composition of cells comprising the lung endothelium.

Methods: We reprocessed human control single-cell RNA sequencing (scRNAseq) data from 6 datasets.

View Article and Find Full Text PDF

Capillary endothelial cells (ECs) maintain a semi-permeable barrier between the blood and tissue by forming inter-EC tight junctions (TJs), regulating selective transport of fluid and solutes. Overwhelming inflammation, as occurs in sepsis, disrupts these TJs, leading to leakage of fluid, proteins, and small molecules into the tissues. Mechanistically, disruption of capillary barrier function is mediated by small Rho-GTPases, such as RhoA, -B, and -C, which are activated by guanine nucleotide exchange factors (GEFs) and disrupted by GTPase-activating factors (GAPs).

View Article and Find Full Text PDF

Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening post-infectious complication occurring unpredictably weeks after mild or asymptomatic SARS-CoV-2 infection. We profiled MIS-C, adult COVID-19, and healthy pediatric and adult individuals using single-cell RNA sequencing, flow cytometry, antigen receptor repertoire analysis, and unbiased serum proteomics, which collectively identified a signature in MIS-C patients that correlated with disease severity. Despite having no evidence of active infection, MIS-C patients had elevated S100A-family alarmins and decreased antigen presentation signatures, indicative of myeloid dysfunction.

View Article and Find Full Text PDF

There are currently limited Food and Drug Administration (FDA)-approved drugs and vaccines for the treatment or prevention of Coronavirus Disease 2019 (COVID-19). Enhanced understanding of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and pathogenesis is critical for the development of therapeutics. To provide insight into viral replication, cell tropism, and host-viral interactions of SARS-CoV-2, we performed single-cell (sc) RNA sequencing (RNA-seq) of experimentally infected human bronchial epithelial cells (HBECs) in air-liquid interface (ALI) cultures over a time course.

View Article and Find Full Text PDF

Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening post-infectious complication occurring unpredictably weeks after mild or asymptomatic SARS-CoV2 infection in otherwise healthy children. Here, we define immune abnormalities in MIS-C compared to adult COVID-19 and pediatric/adult healthy controls using single-cell RNA sequencing, antigen receptor repertoire analysis, unbiased serum proteomics, and assays. Despite no evidence of active infection, we uncover elevated S100A-family alarmins in myeloid cells and marked enrichment of serum proteins that map to myeloid cells and pathways including cytokines, complement/coagulation, and fluid shear stress in MIS-C patients.

View Article and Find Full Text PDF

SARS-CoV-2, the causative agent of COVID-19, has tragically burdened individuals and institutions around the world. There are currently no approved drugs or vaccines for the treatment or prevention of COVID-19. Enhanced understanding of SARS-CoV-2 infection and pathogenesis is critical for the development of therapeutics.

View Article and Find Full Text PDF

Objectives: Shock refractory to fluid and catecholamine therapy has significant morbidity and mortality in children. The use of methylene blue to treat refractory shock in children is not well described. We aim to collect and summarize the literature and define physicians' practice patterns regarding the use of methylene blue to treat shock in children.

View Article and Find Full Text PDF

Rationale: BMX (bone marrow kinase on the X chromosome) is highly expressed in the arterial endothelium from the embryonic stage to the adult stage in mice. It is also expressed in microvessels and the lymphatics in response to pathological stimuli. However, its role in endothelial permeability and sepsis remains unknown.

View Article and Find Full Text PDF

Objectives: Resolution of impaired microvascular flow may lag the normalization of macrocirculatory variables. The significance of microcirculatory dysfunction in critically ill children and neonates is unknown, but microcirculatory variables can be measured using Doppler or videomicroscopy imaging techniques. We outline the current understanding of the role of the microcirculation in critical illness, review methods for its assessment, and perform a systematic review of how it has been monitored in critically ill neonates and children.

View Article and Find Full Text PDF

Tissue engineering may address organ shortages currently limiting clinical transplantation. Off-the-shelf engineered vascularized organs will likely use allogeneic endothelial cells (ECs) to construct microvessels required for graft perfusion. Vasculogenic ECs can be differentiated from committed progenitors (human endothelial colony-forming cells or HECFCs) without risk of mutation or teratoma formation associated with reprogrammed stem cells.

View Article and Find Full Text PDF

Objective: Angiopoietins are postulated diagnostic biomarkers in children and adults with severe sepsis and septic shock. The diagnostic value of angiopoietins in children less than 5 years old has not been established, nor has their effect on permeability in the capillary microvasculature. We aim to determine if levels of angiopoietin-1 or -2 (angpt-1, -2) are diagnostic for severe sepsis/shock in young children and whether they affect the permeability of cultured human dermal microvascular endothelial cells (HDMEC).

View Article and Find Full Text PDF

Background: Epithelial and endothelial barrier integrity, essential for homeostasis, is maintained by cellular boarder structures known as tight junctions (TJs). In critical illness, TJs may become disrupted, resulting in barrier dysfunction manifesting as capillary leak, pulmonary edema, gut bacterial translocation, and multiple organ failure. We aim to provide a clinically focused overview of TJ structure and function and systematically review and analyze all studies assessing markers of endothelial and epithelial TJ breakdown correlated with clinical outcomes in critically ill humans.

View Article and Find Full Text PDF