PLoS Genet
August 2025
Cell fate decisions in eukaryotes are regulated by interconnected networks of transcription factors (TFs) that drive heritable changes in identity. However, much is unknown about how TFs act together to control cell fate, despite links to cellular dysfunction and disease when TF function is aberrant. Here, we addressed the interplay between TFs that control heritable switching in the diploid fungal pathogen Candida albicans.
View Article and Find Full Text PDFThe opportunistic fungal pathogen can undergo cellular transitions in response to environmental cues that impact its lifestyle and its interactions with the human host. This is exemplified by the white-opaque switch, which is a heritable transition between two phenotypic states that is regulated by a highly interconnected network of transcription factors (TFs). To obtain greater understanding of the transcriptional regulation of the switch, we generated a genome-wide, tetracycline-inducible TF library in the WO-1 strain background and identified those TFs whose forced expression induces white cells to switch to the opaque state.
View Article and Find Full Text PDFInaccurate chromosome segregation can lead to the formation of aneuploid cells that harbor an imbalanced complement of chromosomes. Several fungal species are not only able to tolerate the detrimental effects of aneuploidy but can use it to adapt to environmental pressures. The fungal pathobiont Candida albicans frequently acquires supernumerary chromosomes that enable growth in the presence of antifungal drugs or in specific host niches, yet the transcriptional changes associated with aneuploidy are not globally defined.
View Article and Find Full Text PDFThe fungus Candida albicans frequently colonizes the human gastrointestinal tract, from which it can disseminate to cause systemic disease. This polymorphic species can transition between growing as single-celled yeast and as multicellular hyphae to adapt to its environment. The current dogma of C.
View Article and Find Full Text PDFThe ability of the fungus Candida albicans to filament and form biofilms contributes to its burden as a leading cause of hospital-acquired infections. Biofilm development involves an interconnected transcriptional regulatory network (TRN) consisting of nine transcription factors (TFs) that bind both to their own regulatory regions and to those of the other network TFs. Here, we show that seven of the nine TFs in the C.
View Article and Find Full Text PDFis a commensal fungus that colonizes the human oral cavity and gastrointestinal tract but also causes mucosal as well as invasive disease. The expression of virulence traits in clinical isolates is heterogeneous and the genetic basis of this heterogeneity is of high interest. The reference strain SC5314 is highly invasive and expresses robust filamentation and biofilm formation relative to many other clinical isolates.
View Article and Find Full Text PDFUnlabelled: is a diploid human fungal pathogen that displays significant genomic and phenotypic heterogeneity over a range of virulence traits and in the context of a variety of environmental niches. Here, we show that the effects of Rob1 on biofilm and filamentation virulence traits is dependent on both the specific environmental condition and the clinical strain of . The reference strain SC5314 is a heterozygote with two alleles that differ by a single nucleotide polymorphism at position 946 resulting in a serine or proline containing isoform.
View Article and Find Full Text PDFThe paucity of blood granulocyte populations such as neutrophils in laboratory mice is a notable difference between this model organism and humans, but the cause of this species-specific difference is unclear. We previously demonstrated that laboratory mice released into a seminatural environment, referred to as rewilding, display an increase in blood granulocytes that is associated with expansion of fungi in the gut microbiota. Here, we find that tonic signals from fungal colonization induce sustained granulopoiesis through a mechanism distinct from emergency granulopoiesis, leading to a prolonged expansion of circulating neutrophils that promotes immunity.
View Article and Find Full Text PDFThe human fungal pathogen Candida albicans can switch stochastically and heritably between a "white" phase and an "opaque" phase. Opaque cells are the mating-competent form of the species, whereas white cells are thought to be essentially "sterile". Here, we report that glucose depletion, a common nutrient stress, enables C.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2023
Aneuploidy is a frequent occurrence in fungal species where it can alter gene expression and promote adaptation to a variety of environmental cues. Multiple forms of aneuploidy have been observed in the opportunistic fungal pathogen which is a common component of the human gut mycobiome but can escape this niche and cause life-threatening systemic disease. Using a barcode sequencing (Bar-seq) approach, we evaluated a set of diploid strains and found that a strain carrying a third copy of chromosome (Chr) 7 was associated with increased fitness during both gastrointestinal (GI) colonization and systemic infection.
View Article and Find Full Text PDFPhase separation, in which macromolecules partition into a concentrated phase that is immiscible with a dilute phase, is involved with fundamental cellular processes across the tree of life. We review the principles of phase separation and highlight how it impacts diverse processes in the fungal kingdom. These include the regulation of autophagy, cell signalling pathways, transcriptional circuits and the establishment of asymmetry in fungal cells.
View Article and Find Full Text PDFCandida albicans is a pathobiont fungus that can colonize multiple niches in the human body but is also a frequent cause of both mucosal and systemic disease. Despite its clinical importance, a paucity of dominant selectable markers has hindered the development of tools for genetic manipulation of the species. One factor limiting the utilization of dominant selectable markers is that C.
View Article and Find Full Text PDFMucosal tissues are constitutively colonized by a wide assortment of host-adapted microbes. This includes the polymorphic fungus Candida albicans which is a primary target of human adaptive responses. Immunogenicity is replicated after intestinal colonization in preclinical models with a surprising array of protective benefits for most hosts, but harmful consequences for a few.
View Article and Find Full Text PDFFront Cell Infect Microbiol
July 2022
Systemic immunity is stringently regulated by commensal intestinal microbes, including the pathobiont Candida albicans. This fungus utilizes various transcriptional and morphological programs for host adaptation, but how this heterogeneity affects immunogenicity remains uncertain. We show that UME6, a transcriptional regulator of filamentation, is essential for intestinal C.
View Article and Find Full Text PDFCandida albicans is a pathobiont that colonizes multiple niches in the body including the gastrointestinal (GI) tract but is also responsible for both mucosal and systemic infections. Despite its prevalence as a human commensal, the murine GI tract is generally refractory to colonization with the C. albicans reference isolate SC5314.
View Article and Find Full Text PDFThe human commensal and opportunistic fungal pathogen displays extensive genetic and phenotypic variation across clinical isolates. Here, we performed RNA sequencing on 21 well-characterized isolates to examine how genetic variation contributes to gene expression differences and to link these differences to phenotypic traits. adapts primarily through clonal evolution, and yet hierarchical clustering of gene expression profiles in this set of isolates did not reproduce their phylogenetic relationship.
View Article and Find Full Text PDFThe opportunistic fungal pathogen Candida albicans undergoes an unusual parasexual cycle wherein diploid cells mate to form tetraploid cells that can generate genetically diverse progeny via a nonmeiotic program of chromosome loss. The genetic diversity afforded by parasex impacts clinically relevant features including drug resistance and virulence, and yet the factors influencing genome instability in C. albicans are not well defined.
View Article and Find Full Text PDFSeveral Candida species can undergo a heritable and reversible transition from a 'white' state to a mating proficient 'opaque' state. This ability relies on highly interconnected transcriptional networks that control cell-type-specific gene expression programs over multiple generations. Candida albicans, the most prominent pathogenic Candida species, provides a well-studied paradigm for the white-opaque transition.
View Article and Find Full Text PDFCell identity in eukaryotes is controlled by transcriptional regulatory networks that define cell-type-specific gene expression. In the opportunistic fungal pathogen Candida albicans, transcriptional regulatory networks regulate epigenetic switching between two alternative cell states, 'white' and 'opaque', that exhibit distinct host interactions. In the present study, we reveal that the transcription factors (TFs) regulating cell identity contain prion-like domains (PrLDs) that enable liquid-liquid demixing and the formation of phase-separated condensates.
View Article and Find Full Text PDFFront Microbiol
April 2020
[This corrects the article DOI: 10.3389/fmicb.2019.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2019
is a fungal species that can colonize multiple niches in the human host where it can grow either as a commensal or as an opportunistic pathogen. The genome of has long been of considerable interest, given that it is highly plastic and can undergo a wide variety of alterations. These changes play a fundamental role in determining traits and have been shown to enable adaptation both to the host and to antifungal drugs.
View Article and Find Full Text PDFMeiosis is a conserved tenet of sexual reproduction in eukaryotes, yet this program is seemingly absent from many extant species. In the human fungal pathogen Candida albicans, mating of diploid cells generates tetraploid products that return to the diploid state via a non-meiotic process of depolyploidization known as concerted chromosome loss (CCL). Here, we report that recombination rates are more than three orders of magnitude higher during CCL than during normal mitotic growth.
View Article and Find Full Text PDF