PLoS Genet
August 2025
Cell fate decisions in eukaryotes are regulated by interconnected networks of transcription factors (TFs) that drive heritable changes in identity. However, much is unknown about how TFs act together to control cell fate, despite links to cellular dysfunction and disease when TF function is aberrant. Here, we addressed the interplay between TFs that control heritable switching in the diploid fungal pathogen Candida albicans.
View Article and Find Full Text PDFThe ability of the fungus Candida albicans to filament and form biofilms contributes to its burden as a leading cause of hospital-acquired infections. Biofilm development involves an interconnected transcriptional regulatory network (TRN) consisting of nine transcription factors (TFs) that bind both to their own regulatory regions and to those of the other network TFs. Here, we show that seven of the nine TFs in the C.
View Article and Find Full Text PDFMutagenesis is integral for bacterial evolution and the development of antibiotic resistance. Environmental toxins and stressors are known to elevate the rate of mutagenesis through direct DNA toxicity, known as stress-associated mutagenesis, or via a more general stress-induced process that relies on intrinsic bacterial pathways. Here, we characterize the spectra of mutations induced by an array of different stressors using high-throughput sequencing to profile thousands of spectinomycin-resistant colonies of Bacillus subtilis.
View Article and Find Full Text PDFFront Bioeng Biotechnol
June 2020
Pore-forming and hemolytic toxins are bacterial cytotoxic proteins required for virulence in many pathogens, including staphylococci and streptococci, and are notably associated with clinical manifestations of disease. Inspired by adsorption properties of naturally occurring aluminosilicates, we engineered inexpensive, laboratory-synthesized, aluminosilicate geopolymers with controllable pore and surface characteristics to remove pathogenic or cytotoxic material from the surrounding environment. In this study, macroporous and mesoporous geopolymers were produced with and without stearic acid surface modifications.
View Article and Find Full Text PDFAntimicrobial zeolites ion-exchanged with inexpensive transition metal ions (such as zinc, copper, and iron) are critically important for a broader adoption of the materials for public health applications. Due to the high surface area and small particle sizes, nanozeolites are particularly promising in enhancing the efficacy of the zeolite-based antimicrobial materials. By using highly-crystalline nanostructured zeolites (FAU) with textural mesoporosity, we report a comprehensive study on the materials characteristics of zinc-, copper-, and iron-ion exchanged nanozeolites, the ion release properties, and antibacterial efficacy against methicillin-resistant (MRSA), as well as a comparison of the properties to those obtained for the corresponding microsized zeolites.
View Article and Find Full Text PDF