Publications by authors named "Ying-Han Chen"

Inbred mice used for biomedical research display an underdeveloped immune system compared with adult humans, which is attributed in part to the artificial laboratory environment. Despite representing a central component of adaptive immunity, the impact of the laboratory environment on the B cell compartment has not been investigated in detail. Here, we performed an in-depth examination of B cells following rewilding, the controlled release of inbred laboratory mice into an outdoor enclosure.

View Article and Find Full Text PDF

The study of immune phenotypes in wild animals is beset by numerous methodological challenges, with assessment of detailed aspects of phenotype difficult to impossible. This constrains the ability of disease ecologists and ecoimmunologists to describe immune variation and evaluate hypotheses explaining said variation. The development of simple approaches that allow characterization of immune variation across many populations and species would be a significant advance.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how genetics and environment together affect immune responses in mice, focusing on three different inbred strains (C57BL/6, 129S1, PWK/PhJ) in an outdoor setting and infected with a specific parasite.
  • - It finds that while the overall structure of immune cells is influenced by both genetics and the environment, the variation in certain immune responses, like cytokine levels, is mainly determined by genetics, affecting how many parasites the mice carry.
  • - Additionally, the expression of immune markers like CD44 shows different influences: on T cells, it’s mostly genetic, while on B cells, it’s more environmental; and importantly, the impact of genetics appears to lessen when the mice
View Article and Find Full Text PDF

The fungus Candida albicans frequently colonizes the human gastrointestinal tract, from which it can disseminate to cause systemic disease. This polymorphic species can transition between growing as single-celled yeast and as multicellular hyphae to adapt to its environment. The current dogma of C.

View Article and Find Full Text PDF

Environmental influences on immune phenotypes are well-documented, but our understanding of which elements of the environment affect immune systems, and how, remains vague. Behaviors, including socializing with others, are central to an individual's interaction with its environment. We therefore tracked behavior of rewilded laboratory mice of three inbred strains in outdoor enclosures and examined contributions of behavior, including associations measured from spatiotemporal co-occurrences, to immune phenotypes.

View Article and Find Full Text PDF

Loss of antimicrobial proteins such as REG3 family members compromises the integrity of the intestinal barrier. Here, we demonstrate that overproduction of REG3 proteins can also be detrimental by reducing a protective species in the microbiota. Patients with inflammatory bowel disease (IBD) experiencing flares displayed heightened levels of secreted REG3 proteins that mediated depletion of Enterococcus faecium (Efm) from the gut microbiota.

View Article and Find Full Text PDF

The paucity of blood granulocyte populations such as neutrophils in laboratory mice is a notable difference between this model organism and humans, but the cause of this species-specific difference is unclear. We previously demonstrated that laboratory mice released into a seminatural environment, referred to as rewilding, display an increase in blood granulocytes that is associated with expansion of fungi in the gut microbiota. Here, we find that tonic signals from fungal colonization induce sustained granulopoiesis through a mechanism distinct from emergency granulopoiesis, leading to a prolonged expansion of circulating neutrophils that promotes immunity.

View Article and Find Full Text PDF

A highly regio-, chemo-, and stereoselective cascade process initiated by enantioselective iminium-catalyzed conjugate addition of 2-hydroxycinnamaldehydes and 2-oxocarboxylic esters is presented. Normal cinnamaldehydes are not reactive under the same reaction conditions. Bridged bicyclic ketals rather than acetals bearing stereocenters on both the bridge carbon and bridgehead ketal carbon are synthesized.

View Article and Find Full Text PDF

The relative and synergistic contributions of genetics and environment to inter-individual immune response variation remain unclear, despite its implications for understanding both evolutionary biology and medicine. Here, we quantify interactive effects of genotype and environment on immune traits by investigating three inbred mouse strains rewilded in an outdoor enclosure and infected with the parasite, . Whereas cytokine response heterogeneity was primarily driven by genotype, cellular composition heterogeneity was shaped by interactions between genotype and environment.

View Article and Find Full Text PDF

Loss of antimicrobial proteins such as REG3 family members compromises the integrity of the intestinal barrier. Here, we demonstrate that overproduction of REG3 proteins can also be detrimental by reducing a protective species in the microbiota. Patients with inflammatory bowel disease (IBD) experiencing flares displayed heightened levels of secreted REG3 proteins that mediated depletion of ( ) from the gut microbiota.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how COVID-19 affects the gastrointestinal system, focusing on the variation in virus replication among different individuals' intestinal organoids.
  • Researchers found significant differences in the replication of the SARS-CoV-2 virus based on the levels of ACE2 expression in the organoids, which indicates a potential link to varying patient outcomes.
  • The findings suggest that the Omicron variant may have a heightened ability to infect intestinal tissues, highlighting the importance of ACE2 levels in understanding COVID-19's gastrointestinal effects.
View Article and Find Full Text PDF

An organocatalytic vinylogous Michael addition triggered triple-cascade reaction has been developed. 2-Hydroxycinnamaldehydes worked under iminium activation with either acyclic or cyclic ketone-derived α,α-dicyanoalkenes, yielding the benzofused oxabicyclo[3.3.

View Article and Find Full Text PDF
Article Synopsis
  • The study aims to enhance precision medicine by utilizing patient-derived materials to predict disease progression and treatment outcomes, particularly focusing on intestinal graft-versus-host disease (GVHD).
  • Researchers created an ex vivo platform using mouse models to understand the genetic factors, specifically the Atg16L1 gene, that influence susceptibility to T-cell-mediated damage in GVHD.
  • The findings suggest that inhibiting necroptosis or interferon signaling can protect human organoids with the Atg16L1 variant from T-cell attacks, offering a potential strategy for individualized therapeutic interventions.
View Article and Find Full Text PDF

Free-living mammals, such as humans and wild mice, display heightened immune activation compared with artificially maintained laboratory mice. These differences are partially attributed to microbial exposure as laboratory mice infected with pathogens exhibit immune profiles more closely resembling that of free-living animals. Here, we examine how colonization by microorganisms within the natural environment contributes to immune system maturation by releasing inbred laboratory mice into an outdoor enclosure.

View Article and Find Full Text PDF

The relative contributions of genetic and environmental factors to variation in immune responses are poorly understood. Here, we performed a phenotypic analysis of immunological parameters in laboratory mice carrying susceptibility genes implicated in inflammatory bowel disease (IBD) (Nod2 and Atg16l1) upon exposure to environmental microbes. Mice were released into an outdoor enclosure (rewilded) and then profiled for immune responses in the blood and lymph nodes.

View Article and Find Full Text PDF

By introducing a carbon functionality at 2-position of chromane, the formal asymmetric functionalization of the 3-position of 2-substituted chromane has been realized via a highly chemo-, regio-, and stereoselective organocatalytic cascade reaction in a sequential one-pot manner involving an E1cB mechanism governed ring-opening process. Critical to our success was the design of a chiral dipeptide-based bifunctional acid-base organocatalyst, which exhibited high catalytic activity at low catalyst loading (1-0.1 mol %), leading to biologically interesting polyheterocyclic compounds.

View Article and Find Full Text PDF

Two different organocatalytic cascade reaction pathways have been developed toward the diversified synthesis of chromane-containing polyheterocyclic compounds from the readily available starting materials. The application of Hantzsch ester is proposed to be the key to achieve the switch between these two different cascade reaction pathways, and then the electron-deficient 1-aza-1,3-butadienes could be used as the four-atom and two-carbon unit, respectively, to react with 2-hydroxy cinnamaldehydes in a highly regio- and stereocontrolled manner. On the basis of larger-scale synthesis, further transformations of the obtained products have also been realized, leading to cycloadducts with high structural and stereogenic complexity bearing five stereogenic centers, and one is a tetrasubstituted stereocenter.

View Article and Find Full Text PDF

The asymmetric organocatalytic cascade reaction of cyclic β-oxo aldehydes to 2-hydroxycinnamaldehydes is developed. The bifunctional tertiary amine-thiourea catalyst was used in a rationally designed multiple catalysis where the asymmetric iminium catalysis and thiourea anion-binding catalysis were combined by carboxylate anion as a ternary catalytic system to form a quinary catalyst-substrate complex, providing an efficient protocol for the construction of enantioenriched spiro-bridged or cagelike polyheterocyclic compounds. The reuse of catalysts was also successfully realized.

View Article and Find Full Text PDF

A highly efficient asymmetric organocatalysis-triggered reaction sequence is developed. 2-Hydroxy cinnamaldehydes and cyclic -sulfonyl ketimines were both used as multisite substrates (more than two reactive sites) to access structurally diverse chiral bridged and spiro-bridged benzofused aminal derivatives, where an inseparable equilibrating mixture of isomers can be regioselectively converted into bridged benzofused aminals with different ring connectivities via divergent pathways. Several stereoselective transformations of the resulted bridged aminals are presented.

View Article and Find Full Text PDF

The aim of this study was to compare the effectiveness of physical examination, transvaginal sonography, magnetic resonance imaging, and rectal endoscopic sonography for the identification of rectovaginal endometriosis and potential rectal infiltration. Women with suspected rectovaginal endometriosis underwent physical examination, transvaginal sonography, magnetic resonance imaging, and rectal endoscopic sonography. Evaluation was performed for the presence of rectovaginal endometriotic foci and rectal infiltration.

View Article and Find Full Text PDF

The organocatalytic enantioselective synthesis of methanobenzodioxepine derivatives bearing a 6,6,5-bridged ring system is presented. The m-CPBA-triggered in situ α-oxidation of β-oxoesters to provide the required but unstable α-hydroxy-β-dicarbonyl substrates is the key to this three-step sequence, providing the desired cyclic acetals with excellent stereoselectivities containing two bridgehead and one fully substituted stereocenters. It is noteworthy that the absence of m-CPBA furnished the acetal products bearing a 6,6,6-bridged ring system with similar good results from the same starting materials.

View Article and Find Full Text PDF

Following the reactivity inversion strategy, two different two-step sequences were designed and successfully applied to the asymmetric synthesis of spiro-bridged and spiro-fused heterocyclic compounds, which combined chromane, indole, and oxindole, three potential pharmacophores, in one molecule. The power of these two organocatalytic pathways is underscored by mild reaction conditions and high efficiency in the production of synthetically challenging, but biologically important heterocyclic products, which could be transformed into more biologically interesting heterocyclic structures.

View Article and Find Full Text PDF

Structurally complex cyclic hemiacetals bearing a racemic tetrasubstituted stereocenter have been prepared in a concise manner and were successfully used in an organocatalytic enantioselective sequence to react with functionalized nitro-olefins, providing bicyclic acetal-containing compounds as two separable epimers with excellent stereoselectivity. The reaction showed broad substrate scope, with respect to the starting hemiacetals. Moreover, this protocol allows the synthetic transformation of the products to various interesting heterocyclic compounds with substantial structural diversity and broad functionality.

View Article and Find Full Text PDF

Immune cells constantly survey the host for pathogens or tumors and secrete cytokines to alert surrounding cells of these threats. In vivo, activated immune cells secrete cytokines for several hours, yet an acute immune reaction occurs over days. Given these divergent timescales, we addressed how cytokine-responsive cells translate brief cytokine exposure into phenotypic changes that persist over long timescales.

View Article and Find Full Text PDF