Understanding the mechanisms by which organs and tissues evolve new physiological functions is central to understanding the evolution of novelty. This is particularly interesting in the context of related tissues that evolve specialized, yet complementary, functions. Snake venom glands are an attractive system to test hypotheses related to the evolution and specialization of novel physiological function, as these modified salivary glands have evolved over ∼60 MY to synthesize and store venom.
View Article and Find Full Text PDFSpecies tree inference is often assumed to be more accurate as datasets increase in size, with whole genomes representing the best-case-scenario for estimating a single, most-likely speciation history with high confidence. However, genomes may harbor a complex mixture of evolutionary histories among loci, which amplifies the opportunity for model misspecification and impacts phylogenetic inference. Accordingly, multiple distinct and well-supported phylogenetic trees are often recovered from genome-scale data, and approaches for biologically interpreting these distinct signatures are a major challenge for evolutionary biology in the age of genomics.
View Article and Find Full Text PDFUnderstanding and predicting the relationships between genotype and phenotype is often challenging, largely due to the complex nature of eukaryotic gene regulation. A step towards this goal is to map how phenotypic diversity evolves through genomic changes that modify gene regulatory interactions. Using the Prairie Rattlesnake (Crotalus viridis) and related species, we integrate mRNA-seq, proteomic, ATAC-seq and whole-genome resequencing data to understand how specific evolutionary modifications to gene regulatory network components produce differences in venom gene expression.
View Article and Find Full Text PDFThe ubiquitous cellular heterogeneity underlying many organism-level phenotypes raises questions about what factors drive this heterogeneity and how these complex heterogeneous systems evolve. Here, we use single-cell expression data from a Prairie rattlesnake (Crotalus viridis) venom gland to evaluate hypotheses for signaling networks underlying snake venom regulation and the degree to which different venom gene families have evolutionarily recruited distinct regulatory architectures. Our findings suggest that snake venom regulatory systems have evolutionarily co-opted trans-regulatory factors from extracellular signal-regulated kinase and unfolded protein response pathways that specifically coordinate expression of distinct venom toxins in a phased sequence across a single population of secretory cells.
View Article and Find Full Text PDFFront Epidemiol
September 2022
Schistosomiasis is a neglected tropical disease caused by multiple parasitic species, and which impacts over 200 million people globally, mainly in low- and middle-income countries. Genomic surveillance to detect evidence for natural selection in schistosome populations represents an emerging and promising approach to identify and interpret schistosome responses to ongoing control efforts or other environmental factors. Here we review how genomic variation is used to detect selection, how these approaches have been applied to schistosomes, and how future studies to detect selection may be improved.
View Article and Find Full Text PDFHybrid zones provide valuable opportunities to understand the genomic mechanisms that promote speciation by providing insight into factors involved in intermediate stages of speciation. Here, we investigate introgression in a hybrid zone between two rattlesnake species (Crotalus viridis and Crotalus oreganus concolor) that have undergone historical allopatric divergence and recent range expansion and secondary contact. We use Bayesian genomic cline models to characterize genomic patterns of introgression between these lineages and identify loci potentially subject to selection in hybrids.
View Article and Find Full Text PDFNat Ecol Evol
September 2022
The origin of snake venom involved duplication and recruitment of non-venom genes into venom systems. Several studies have predicted that directional positive selection has governed this process. Venom composition varies substantially across snake species and venom phenotypes are locally adapted to prey, leading to coevolutionary interactions between predator and prey.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2021
Global cooling and glacial-interglacial cycles since Antarctica's isolation have been responsible for the diversification of the region's marine fauna. By contrast, these same Earth system processes are thought to have played little role terrestrially, other than driving widespread extinctions. Here, we show that on islands along the Antarctic Polar Front, paleoclimatic processes have been key to diversification of one of the world's most geographically isolated and unique groups of herbivorous beetles-Ectemnorhinini weevils.
View Article and Find Full Text PDFStochastic models of character trait evolution have become a cornerstone of evolutionary biology in an array of contexts. While probabilistic models have been used extensively for statistical inference, they have largely been ignored for the purpose of measuring distances between phylogeny-aware models. Recent contributions to the problem of phylogenetic distance computation have highlighted the importance of explicitly considering evolutionary model parameters and their impacts on molecular sequence data when quantifying dissimilarity between trees.
View Article and Find Full Text PDFBioinformatics
July 2021
Summary: Here, we present PhyloWGA, an open source R package for conducting phylogenetic analysis and investigation of whole genome data.
Availabilityand Implementation: Available at Github (https://github.com/radamsRHA/PhyloWGA).
Microchromosomes are common yet poorly understood components of many vertebrate genomes. Recent studies have revealed that microchromosomes contain a high density of genes and possess other distinct characteristics compared with macrochromosomes. Whether distinctive characteristics of microchromosomes extend to features of genome structure and organization, however, remains an open question.
View Article and Find Full Text PDFNew world coralsnakes of the genus Micrurus are a diverse radiation of highly venomous and brightly colored snakes that range from North Carolina to Argentina. Species in this group have played central roles in developing and testing hypotheses about the evolution of mimicry and aposematism. Despite their diversity and prominence as model systems, surprisingly little is known about species boundaries and phylogenetic relationships within Micrurus, which has substantially hindered meaningful analyses of their evolutionary history.
View Article and Find Full Text PDFMeiotic recombination in vertebrates is concentrated in hotspots throughout the genome. The location and stability of hotspots have been linked to the presence or absence of PRDM9, leading to two primary models for hotspot evolution derived from mammals and birds. Species with PRDM9-directed recombination have rapid turnover of hotspots concentrated in intergenic regions (i.
View Article and Find Full Text PDFGenome-scale species tree inference is largely restricted to heuristic approaches that use estimated gene trees to reconstruct species-level relationships. Central to these heuristic species tree methods is the assumption that the gene trees are estimated without error. To increase the accuracy of input gene trees used to infer species trees, several techniques have recently been developed for constructing longer "supergenes" that represent sets of loci inferred to share the same genealogical history.
View Article and Find Full Text PDFConvergent evolution is often documented in organisms inhabiting isolated environments with distinct ecological conditions and similar selective regimes. Several Central America islands harbor dwarf Boa populations that are characterized by distinct differences in growth, mass, and craniofacial morphology, which are linked to the shared arboreal and feast-famine ecology of these island populations. Using high-density RADseq data, we inferred three dwarf island populations with independent origins and demonstrate that selection, along with genetic drift, has produced both divergent and convergent molecular evolution across island populations.
View Article and Find Full Text PDFChromosome Res
December 2019
Despite the ubiquitous use of statistical models for phylogenomic and population genomic inferences, this model-based rigor is rarely applied to post hoc comparison of trees. In a recent study, Garba et al. derived new methods for measuring the distance between two gene trees computed as the difference in their site pattern probability distributions.
View Article and Find Full Text PDFHere we use a chromosome-level genome assembly of a prairie rattlesnake (), together with Hi-C, RNA-seq, and whole-genome resequencing data, to study key features of genome biology and evolution in reptiles. We identify the rattlesnake Z Chromosome, including the recombining pseudoautosomal region, and find evidence for partial dosage compensation driven by an evolutionary accumulation of a female-biased up-regulation mechanism. Comparative analyses with other amniotes provide new insight into the origins, structure, and function of reptile microchromosomes, which we demonstrate have markedly different structure and function compared to macrochromosomes.
View Article and Find Full Text PDFFundamental to all phylogenomic studies is the notion that increasing the amount of data - to entire genomes when possible - will increase the accuracy of phylogenetic inference. Simply adding more data does not, however, guarantee phylogenomic inferences will be more accurate. Even genome-scale reconstructions of species histories can suffer the effects of both incomplete lineage sorting (ILS) and gene tree estimation error (GTEE).
View Article and Find Full Text PDFInvasive species provide powerful in situ experimental systems for studying evolution in response to selective pressures in novel habitats. While research has shown that phenotypic evolution can occur rapidly in nature, few examples exist of genomewide adaptation on short "ecological" timescales. Burmese pythons (Python molurus bivittatus) have become a successful and impactful invasive species in Florida over the last 30 years despite major freeze events that caused high python mortality.
View Article and Find Full Text PDFColubridae represents the most phenotypically diverse and speciose family of snakes, yet no well-assembled and annotated genome exists for this lineage. Here, we report and analyze the genome of the garter snake, Thamnophis sirtalis, a colubrid snake that is an important model species for research in evolutionary biology, physiology, genomics, behavior, and the evolution of toxin resistance. Using the garter snake genome, we show how snakes have evolved numerous adaptations for sensing and securing prey, and identify features of snake genome structure that provide insight into the evolution of amniote genomes.
View Article and Find Full Text PDFBroad paradigms of vertebrate genomic repeat element evolution have been largely shaped by analyses of mammalian and avian genomes. Here, based on analyses of genomes sequenced from over 60 squamate reptiles (lizards and snakes), we show that patterns of genomic repeat landscape evolution in squamates challenge such paradigms. Despite low variance in genome size, squamate genomes exhibit surprisingly high variation among species in abundance (ca.
View Article and Find Full Text PDFMol Phylogenet Evol
October 2018
The Mojave rattlesnake (Crotalus scutulatus) inhabits deserts and arid grasslands of the western United States and Mexico. Despite considerable interest in its highly toxic venom and the recognition of two subspecies, no molecular studies have characterized range-wide genetic diversity and population structure or tested species limits within C. scutulatus.
View Article and Find Full Text PDFThe assumption of strictly neutral evolution is fundamental to the multispecies coalescent model and permits the derivation of gene tree distributions and coalescent times conditioned on a given species tree. In this study, we conduct computer simulations to explore the effects of violating this assumption in the form of species-specific positive selection when estimating species trees, species delimitations, and coalescent parameters under the model. We simulated data sets under an array of evolutionary scenarios that differ in both speciation parameters (i.
View Article and Find Full Text PDFBioinformatics
March 2018
Summary: We describe ThetaMater, an open source R package comprising a suite of functions for efficient and scalable Bayesian estimation of the population size parameter θ from genomic data.
Availability And Implementation: ThetaMater is available at GitHub (https://github.com/radamsRHA/ThetaMater).