Understanding the mechanisms by which organs and tissues evolve new physiological functions is central to understanding the evolution of novelty. This is particularly interesting in the context of related tissues that evolve specialized, yet complementary, functions. Snake venom glands are an attractive system to test hypotheses related to the evolution and specialization of novel physiological function, as these modified salivary glands have evolved over ∼60 MY to synthesize and store venom.
View Article and Find Full Text PDFUnderstanding and predicting the relationships between genotype and phenotype is often challenging, largely due to the complex nature of eukaryotic gene regulation. A step towards this goal is to map how phenotypic diversity evolves through genomic changes that modify gene regulatory interactions. Using the Prairie Rattlesnake (Crotalus viridis) and related species, we integrate mRNA-seq, proteomic, ATAC-seq and whole-genome resequencing data to understand how specific evolutionary modifications to gene regulatory network components produce differences in venom gene expression.
View Article and Find Full Text PDF