New analyses show that trait variability links evolution across vastly different timescales.
View Article and Find Full Text PDFProc Biol Sci
February 2024
Populations declining toward extinction can persist via genetic adaptation in a process called evolutionary rescue. Predicting evolutionary rescue has applications ranging from conservation biology to medicine, but requires understanding and integrating the multiple effects of a stressful environmental change on population processes. Here we derive a simple expression for how generation time, a key determinant of the rate of evolution, varies with population size during evolutionary rescue.
View Article and Find Full Text PDFAbstractThe matrix, which quantifies the genetic architecture of traits, is often viewed as an evolutionary constraint. However, can evolve in response to selection and may also be viewed as a product of adaptive evolution. Convergent evolution of in similar environments would suggest that evolves adaptively, but it is difficult to disentangle such effects from phylogeny.
View Article and Find Full Text PDFThe repeated evolution of tetrodotoxin (TTX) resistance provides a model for testing hypotheses about the mechanisms of convergent evolution. This poison is broadly employed as a potent antipredator defence, blocking voltage-gated sodium channels (Na ) in muscles and nerves, paralysing and sometimes killing predators. Resistance in taxa bearing this neurotoxin and a few predators appears to come from convergent replacements in specific Na residues that interact with TTX.
View Article and Find Full Text PDFTwo popular approaches for modeling social evolution, evolutionary game theory and quantitative genetics, ask complementary questions but are rarely integrated. Game theory focuses on evolutionary outcomes, with models solving for evolutionarily stable equilibria, whereas quantitative genetics provides insight into evolutionary processes, with models predicting short-term responses to selection. Here we draw parallels between evolutionary game theory and interacting phenotypes theory, which is a quantitative genetic framework for understanding social evolution.
View Article and Find Full Text PDFCoevolution occurs when species interact to influence one another's fitness, resulting in reciprocal evolutionary change. In many coevolving lineages, trait expression in one species is modified by the genotypes and phenotypes of the other, forming feedback loops reminiscent of models of intraspecific social evolution. Here, we adapt the theory of within-species social evolution, characterized by indirect genetic effects and social selection imposed by interacting individuals, to the case of interspecific interactions.
View Article and Find Full Text PDFEvolution by natural selection is often viewed as a process that inevitably leads to adaptation or an increase in population fitness over time. However, maladaptation, an evolved decrease in fitness, may also occur in response to natural selection under some conditions. Social selection, which arises from the effects of social partners on fitness, has been identified as a potential cause of maladaptation, but we lack a general rule identifying when social selection should lead to a decrease in population mean fitness.
View Article and Find Full Text PDFWondrously elaborate weapons and displays that appear to be counter to ecological optima are widespread features of male contests for mates across the animal kingdom. To understand how such diverse traits evolve, here we develop a quantitative genetic model of sexual selection for a male signaling trait that mediates aggression in male-male contests and show that an honest indicator of aggression can generate selection on itself by altering the social environment. This can cause selection to accelerate as the trait is elaborated, leading to runaway evolution.
View Article and Find Full Text PDFSexually transmitted microbes are hypothesized to influence the evolution of reproductive strategies. Though frequently discussed in this context, our understanding of the reproductive microbiome is quite nascent. Indeed, testing this hypothesis first requires establishing a baseline understanding of the temporal dynamics of the reproductive microbiome and of how individual variation in reproductive behavior and age influence the assembly and maintenance of the reproductive microbiome as a whole.
View Article and Find Full Text PDFQuantitative genetic theory proposes that phenotypic evolution is shaped by , the matrix of genetic variances and covariances among traits. In species with separate sexes, the evolution of sexual dimorphism is also shaped by , the matrix of between-sex genetic variances and covariances. Despite considerable focus on estimating these matrices, their underlying biological mechanisms are largely speculative.
View Article and Find Full Text PDFHeredity (Edinb)
May 2020
The arms race between tetrodotoxin-bearing Pacific newts (Taricha) and their garter snake predators (Thamnophis) in western North America has become a classic example of coevolution, shedding light on predator-prey dynamics, the molecular basis of adaptation, and patterns of convergent evolution. Newts are defended by tetrodotoxin (TTX), a neurotoxin that binds to voltage-gated sodium channels (Na proteins), arresting electrical activity in nerves and muscles and paralyzing would-be predators. However, populations of the common garter snake (T.
View Article and Find Full Text PDFBecause the sexes share a genome, traits expressed in males are usually genetically correlated with the same traits expressed in females. On short timescales, between-sex genetic correlations (rmf) for shared traits may constrain the evolution of sexual dimorphism by preventing males and females from responding independently to sex-specific selection. However, over longer timescales, rmf may evolve, thereby facilitating the evolution of dimorphism.
View Article and Find Full Text PDFOn microevolutionary timescales, adaptive evolution depends upon both natural selection and the underlying genetic architecture of traits under selection, which may constrain evolutionary outcomes. Whether such genetic constraints shape phenotypic diversity over macroevolutionary timescales is more controversial, however. One key prediction is that genetic constraints should bias the early stages of species divergence along "genetic lines of least resistance" defined by the genetic (co)variance matrix, G.
View Article and Find Full Text PDFColubridae represents the most phenotypically diverse and speciose family of snakes, yet no well-assembled and annotated genome exists for this lineage. Here, we report and analyze the genome of the garter snake, Thamnophis sirtalis, a colubrid snake that is an important model species for research in evolutionary biology, physiology, genomics, behavior, and the evolution of toxin resistance. Using the garter snake genome, we show how snakes have evolved numerous adaptations for sensing and securing prey, and identify features of snake genome structure that provide insight into the evolution of amniote genomes.
View Article and Find Full Text PDFOrganisms express phenotypic plasticity during social interactions. Interacting phenotype theory has explored the consequences of social plasticity for evolution, but it is unclear how this theory applies to complex social structures. We adapt interacting phenotype models to general social structures to explore how the number of social connections between individuals and preference for phenotypically similar social partners affect phenotypic variation and evolution.
View Article and Find Full Text PDFThe evolution of sexual dimorphism is predicted to occur through reductions in between-sex genetic correlations (r) for shared traits, but the physiological and genetic mechanisms that facilitate these reductions remain largely speculative. Here, we use a paternal half-sibling breeding design in captive brown anole lizards (Anolis sagrei) to show that the development of sexual size dimorphism is mirrored by the ontogenetic breakdown of r for body size and growth rate. Using transcriptome data from the liver (which integrates growth and metabolism), we show that sex-biased gene expression also increases dramatically between ontogenetic stages bracketing this breakdown of r.
View Article and Find Full Text PDFNovel adaptations must originate and function within an already established genome [1]. As a result, the ability of a species to adapt to new environmental challenges is predicted to be highly contingent on the evolutionary history of its lineage [2-6]. Despite a growing appreciation of the importance of historical contingency in the adaptive evolution of single proteins [7-11], we know surprisingly little about its role in shaping complex adaptations that require evolutionary change in multiple genes.
View Article and Find Full Text PDFIntegr Comp Biol
August 2016
Evolutionary endocrinology represents a synthesis between comparative endocrinology and evolutionary genetics. This synthesis can be viewed through the breeder's equation, a cornerstone of quantitative genetics that, in its univariate form, states that a population's evolutionary response is the product of the heritability of a trait and selection on that trait (R = h(2)S). Under this framework, evolutionary endocrinologists have begun to quantify the heritability of, and the strength of selection on, a variety of hormonal phenotypes.
View Article and Find Full Text PDFMembers of a gene family expressed in a single species often experience common selection pressures. Consequently, the molecular basis of complex adaptations may be expected to involve parallel evolutionary changes in multiple paralogs. Here, we use bacterial artificial chromosome library scans to investigate the evolution of the voltage-gated sodium channel (Nav) family in the garter snake Thamnophis sirtalis, a predator of highly toxic Taricha newts.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
May 2014
Hamilton's theory of inclusive fitness revolutionized our understanding of the evolution of social interactions. Surprisingly, an incorporation of Hamilton's perspective into the quantitative genetic theory of phenotypic evolution has been slow, despite the popularity of quantitative genetics in evolutionary studies. Here, we discuss several versions of Hamilton's rule for social evolution from a quantitative genetic perspective, emphasizing its utility in empirical applications.
View Article and Find Full Text PDFMaternal effects can dramatically influence the evolutionary process, in some cases facilitating and in others hindering adaptive evolution. Maternal effects have been incorporated into quantitative genetic models using two theoretical frameworks: the variance-components approach, which partitions variance into direct and maternal components, and the trait-based approach, which assumes that maternal effects are mediated by specific maternal traits. Here, we demonstrate parallels between these models and test their ability to predict evolutionary change.
View Article and Find Full Text PDFStudies integrating evolutionary and developmental analyses of morphological variation are of growing interest to biologists as they promise to shed fresh light on the mechanisms of morphological diversification. Sexually dimorphic traits tend to be incredibly divergent across taxa. Such diversification must arise through evolutionary modifications to sex differences during development.
View Article and Find Full Text PDF