Publications by authors named "Zachary L Nikolakis"

Studying the consequences of hybridization between closely related species with divergent traits can reveal patterns of evolution that shape and maintain extreme trophic adaptations. Snake venoms are an excellent model system for examining the evolutionary and ecological patterns that underlie highly selected polymorphic traits. Here we investigate hybrid venom phenotypes that result from natural introgression between two rattlesnake species that express highly divergent venom phenotypes: Crotalus o.

View Article and Find Full Text PDF

Background: Snake venoms are trophic adaptations that represent an ideal model to examine the evolutionary factors that shape polymorphic traits under strong natural selection. Venom compositional variation is substantial within and among venomous snake species. However, the forces shaping this phenotypic complexity, as well as the potential integrated roles of biotic and abiotic factors, have received little attention.

View Article and Find Full Text PDF

Schistosomiasis is a neglected tropical disease caused by multiple parasitic species, and which impacts over 200 million people globally, mainly in low- and middle-income countries. Genomic surveillance to detect evidence for natural selection in schistosome populations represents an emerging and promising approach to identify and interpret schistosome responses to ongoing control efforts or other environmental factors. Here we review how genomic variation is used to detect selection, how these approaches have been applied to schistosomes, and how future studies to detect selection may be improved.

View Article and Find Full Text PDF

Hybrid zones provide valuable opportunities to understand the genomic mechanisms that promote speciation by providing insight into factors involved in intermediate stages of speciation. Here, we investigate introgression in a hybrid zone between two rattlesnake species (Crotalus viridis and Crotalus oreganus concolor) that have undergone historical allopatric divergence and recent range expansion and secondary contact. We use Bayesian genomic cline models to characterize genomic patterns of introgression between these lineages and identify loci potentially subject to selection in hybrids.

View Article and Find Full Text PDF

The global community has adopted ambitious goals to eliminate schistosomiasis as a public health problem, and new tools are needed to achieve them. Mass drug administration programs, for example, have reduced the burden of schistosomiasis, but the identification of hotspots of persistent and reemergent transmission threaten progress toward elimination and underscore the need to couple treatment with interventions that reduce transmission. Recent advances in DNA sequencing technologies make whole-genome sequencing a valuable and increasingly feasible option for population-based studies of complex parasites such as schistosomes.

View Article and Find Full Text PDF

The origin of snake venom involved duplication and recruitment of non-venom genes into venom systems. Several studies have predicted that directional positive selection has governed this process. Venom composition varies substantially across snake species and venom phenotypes are locally adapted to prey, leading to coevolutionary interactions between predator and prey.

View Article and Find Full Text PDF

Understanding the genetic underpinnings of schistosome host preferences is critical. Luo et al. recently identified genes associated with intermediate and definitive host-switching based on a new chromosome-level genome for Schistosoma japonicum, population genetic comparisons, and follow-up experiments.

View Article and Find Full Text PDF

Schistosomiasis persists in Asian regions despite aggressive elimination measures. To identify factors enabling continued parasite transmission, we performed reduced representation genome sequencing on Schistosoma japonicum miracidia collected across multiple years from transmission hotspots in Sichuan, China. We discovered strong geographic structure, suggesting that local, rather than imported, reservoirs are key sources of persistent infections in the region.

View Article and Find Full Text PDF

Male-biased mutation rates occur in a diverse array of organisms. The ratio of male-to-female mutation rate may have major ramifications for evolution across the genome, and for sex-linked genes in particular. In ZW species, the Z chromosome is carried by males two-thirds of the time, leading to the prediction that male-biased mutation rates will have a disproportionate effect on the evolution of Z-linked genes relative to autosomes and the W chromosome.

View Article and Find Full Text PDF

Genomic approaches hold great promise for resolving unanswered questions about transmission patterns and responses to control efforts for schistosomiasis and other neglected tropical diseases. However, the cost of generating genomic data and the challenges associated with obtaining sufficient DNA from individual schistosome larvae (miracidia) from mammalian hosts have limited the application of genomic data for studying schistosomes and other complex macroparasites. Here, we demonstrate the feasibility of utilizing whole genome amplification and sequencing (WGS) to analyze individual archival miracidia.

View Article and Find Full Text PDF

Meiotic recombination in vertebrates is concentrated in hotspots throughout the genome. The location and stability of hotspots have been linked to the presence or absence of PRDM9, leading to two primary models for hotspot evolution derived from mammals and birds. Species with PRDM9-directed recombination have rapid turnover of hotspots concentrated in intergenic regions (i.

View Article and Find Full Text PDF