Publications by authors named "Ricardo G Cesar"

Species' traits and environmental conditions determine the abundance of tree species across the globe. The extent to which traits of dominant and rare tree species differ remains untested across a broad environmental range, limiting our understanding of how species traits and the environment shape forest functional composition. We use a global dataset of tree composition of >22,000 forest plots and 11 traits of 1663 tree species to ask how locally dominant and rare species differ in their trait values, and how these differences are driven by climatic gradients in temperature and water availability in forest biomes across the globe.

View Article and Find Full Text PDF

The management of fluorescent lamps wastes is a challenge, and its disposal in soils may cause harmful effects on human health and edaphic biota due to the presence of Hg and other potentially toxic metals. However, the pedogeochemical behavior of metals from fluorescent lamps is still rarely studied in the tropics. An Oxisol sample was contaminated in the laboratory using a dosage of 6.

View Article and Find Full Text PDF
Article Synopsis
  • * Analysis of data from over 1 million forest plots and thousands of tree species shows that wood density varies significantly by latitude, being up to 30% denser in tropical forests compared to boreal forests, and is influenced mainly by temperature and soil moisture.
  • * The research also finds that disturbances like human activity and fire alter wood density at local levels, affecting forest carbon stock estimates by up to 21%, emphasizing the importance of understanding environmental impacts on forest ecosystems.
View Article and Find Full Text PDF

Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system. Remote-sensing estimates to quantify carbon losses from global forests are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced and satellite-derived approaches to evaluate the scale of the global forest carbon potential outside agricultural and urban lands.

View Article and Find Full Text PDF

Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records.

View Article and Find Full Text PDF

Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies. Here, leveraging global tree databases, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity.

View Article and Find Full Text PDF

This paper consists of the evaluation in regards to the ecotoxicological effectiveness of a treatment applied to a coal mining waste. The treatment consisted of separating the particles based on gravimetric concentration in spirals, generating three fractions: heavy, intermediate, and light, with high, moderate, and low pyrite content, respectively. The intermediate fraction represents the larger disposal volume of the waste on soils.

View Article and Find Full Text PDF
Article Synopsis
  • The latitudinal diversity gradient (LDG) reflects a global trend showing that species richness typically increases towards the tropics, but understanding its causes has been challenging due to insufficient data.
  • A new high-resolution map of local tree species richness was created using extensive global forest inventory data and local biophysical factors, analyzing around 1.3 million sample plots.
  • Findings indicate that annual mean temperature is a significant predictor of tree species richness, aligning with the metabolic theory of biodiversity, but additional local factors also play a crucial role, especially in tropical regions.
View Article and Find Full Text PDF

Forests that regrow naturally on abandoned fields are important for restoring biodiversity and ecosystem services, but can they also preserve the distinct regional tree floras? Using the floristic composition of 1215 early successional forests (≤20 years) in 75 human-modified landscapes across the Neotropic realm, we identified 14 distinct floristic groups, with a between-group dissimilarity of 0.97. Floristic groups were associated with location, bioregions, soil pH, temperature seasonality, and water availability.

View Article and Find Full Text PDF

One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels.

View Article and Find Full Text PDF

One-third of all Neotropical forests are secondary forests that regrow naturally after agricultural use through secondary succession. We need to understand better how and why succession varies across environmental gradients and broad geographic scales. Here, we analyze functional recovery using community data on seven plant characteristics (traits) of 1,016 forest plots from 30 chronosequence sites across the Neotropics.

View Article and Find Full Text PDF

Over the last decades, the Rodrigo de Freitas Lagoon (RFL), Rio de Janeiro, Brazil, has been impacted by the release of untreated domestic sewage, causing eutrophication processes with negative effects on its biota. Recently, the RFL underwent urban interventions to fulfill the demands of the 2016 Olympic Games, which included building the waist gallery and monitoring clandestine waste discharges into the underground drainage network. Organic-source tracing methods can be successfully used to characterize the organic matter transported from the urbanized areas to the RLF.

View Article and Find Full Text PDF
Article Synopsis
  • Tropical forests are rapidly converted for agriculture but can regrow naturally through processes called secondary succession, which vary by forest type.
  • Analysis of 1,403 plots across the Neotropics reveals that in wet forests, succession moves from low to high wood density, while in dry forests, it goes from high to low due to different environmental stresses.
  • Understanding these patterns can help optimize species selection for reforestation efforts by matching the wood density of chosen species to that of early successional communities in the specific climate conditions.
View Article and Find Full Text PDF

Old-growth tropical forests harbor an immense diversity of tree species but are rapidly being cleared, while secondary forests that regrow on abandoned agricultural lands increase in extent. We assess how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics. Secondary forests recover remarkably fast in species richness but slowly in species composition.

View Article and Find Full Text PDF

Epiphytes are hyper-diverse and one of the frequently undervalued life forms in plant surveys and biodiversity inventories. Epiphytes of the Atlantic Forest, one of the most endangered ecosystems in the world, have high endemism and radiated recently in the Pliocene. We aimed to (1) compile an extensive Atlantic Forest data set on vascular, non-vascular plants (including hemiepiphytes), and lichen epiphyte species occurrence and abundance; (2) describe the epiphyte distribution in the Atlantic Forest, in order to indicate future sampling efforts.

View Article and Find Full Text PDF

The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of forest inventory plots from a network of 42 Neotropical forest chronosequences. During the first three decades of natural forest regeneration, legume basal area is twice as high in dry compared with wet secondary forests.

View Article and Find Full Text PDF

Mixed tree plantings and natural regeneration are the main restoration approaches for recovering tropical forests worldwide. Despite substantial differences in implementation costs between these methods, little is known regarding how they differ in terms of ecological outcomes, which is key information for guiding decision making and cost-effective restoration planning. Here, we compared the early ecological outcomes of natural regeneration and tree plantations for restoring the Brazilian Atlantic Forest in agricultural landscapes.

View Article and Find Full Text PDF

Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.

View Article and Find Full Text PDF

Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics.

View Article and Find Full Text PDF