Publications by authors named "Danae M A Rozendaal"

Premise: The Amazonian hyperdominant genus Eperua (Fabaceae) currently holds 20 described species and has two strongly different inflorescence and flower types, with corresponding different pollination syndrome. The evolution of these vastly different inflorescence types within this genus was unknown and the main topic in this study.

Methods: We constructed a molecular phylogeny, based on the full nuclear ribosomal DNA and partial plastome, using Bayesian inference and maximum likelihood methods, to test whether the genus is monophyletic, whether all species are monophyletic and if the shift from bat to bee pollination (or vice versa) occurred once in this genus.

View Article and Find Full Text PDF

Amazonian forests function as biomass and biodiversity reservoirs, contributing to climate change mitigation. While they continuously experience disturbance, the effect that disturbances have on biomass and biodiversity over time has not yet been assessed at a large scale. Here, we evaluate the degree of recent forest disturbance in Peruvian Amazonia and the effects that disturbance, environmental conditions and human use have on biomass and biodiversity in disturbed forests.

View Article and Find Full Text PDF

Forests that regrow naturally on abandoned fields are important for restoring biodiversity and ecosystem services, but can they also preserve the distinct regional tree floras? Using the floristic composition of 1215 early successional forests (≤20 years) in 75 human-modified landscapes across the Neotropic realm, we identified 14 distinct floristic groups, with a between-group dissimilarity of 0.97. Floristic groups were associated with location, bioregions, soil pH, temperature seasonality, and water availability.

View Article and Find Full Text PDF

Tropical forests disappear rapidly because of deforestation, yet they have the potential to regrow naturally on abandoned lands. We analyze how 12 forest attributes recover during secondary succession and how their recovery is interrelated using 77 sites across the tropics. Tropical forests are highly resilient to low-intensity land use; after 20 years, forest attributes attain 78% (33 to 100%) of their old-growth values.

View Article and Find Full Text PDF

One-third of all Neotropical forests are secondary forests that regrow naturally after agricultural use through secondary succession. We need to understand better how and why succession varies across environmental gradients and broad geographic scales. Here, we analyze functional recovery using community data on seven plant characteristics (traits) of 1,016 forest plots from 30 chronosequence sites across the Neotropics.

View Article and Find Full Text PDF

Competition among trees is an important driver of community structure and dynamics in tropical forests. Neighboring trees may impact an individual tree's growth rate and probability of mortality, but large-scale geographic and environmental variation in these competitive effects has yet to be evaluated across the tropical forest biome. We quantified effects of competition on tree-level basal area growth and mortality for trees ≥10-cm diameter across 151 ~1-ha plots in mature tropical forests in Amazonia and tropical Africa by developing nonlinear models that accounted for wood density, tree size, and neighborhood crowding.

View Article and Find Full Text PDF

As countries advance in greenhouse gas (GHG) accounting for climate change mitigation, consistent estimates of aboveground net biomass change (∆AGB) are needed. Countries with limited forest monitoring capabilities in the tropics and subtropics rely on IPCC 2006 default ∆AGB rates, which are values per ecological zone, per continent. Similarly, research into forest biomass change at a large scale also makes use of these rates.

View Article and Find Full Text PDF
Article Synopsis
  • Tropical forests are rapidly converted for agriculture but can regrow naturally through processes called secondary succession, which vary by forest type.
  • Analysis of 1,403 plots across the Neotropics reveals that in wet forests, succession moves from low to high wood density, while in dry forests, it goes from high to low due to different environmental stresses.
  • Understanding these patterns can help optimize species selection for reforestation efforts by matching the wood density of chosen species to that of early successional communities in the specific climate conditions.
View Article and Find Full Text PDF

Old-growth tropical forests harbor an immense diversity of tree species but are rapidly being cleared, while secondary forests that regrow on abandoned agricultural lands increase in extent. We assess how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics. Secondary forests recover remarkably fast in species richness but slowly in species composition.

View Article and Find Full Text PDF

The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of forest inventory plots from a network of 42 Neotropical forest chronosequences. During the first three decades of natural forest regeneration, legume basal area is twice as high in dry compared with wet secondary forests.

View Article and Find Full Text PDF

Global environmental change is expected to induce widespread changes in the geographic distribution and biomass of forest communities. Impacts have been projected from both empirical (statistical) and mechanistic (physiology-based) modelling approaches, but there remains an important gap in accurately predicting abundance across species' ranges from spatial variation in individual-level demographic processes. We address this issue by using a cohort-based forest dynamics model (CAIN) to predict spatial variation in the abundance of six plant functional types (PFTs) across the eastern United States.

View Article and Find Full Text PDF

In closed-canopy forests, gap formation and closure are thought to be major drivers of forest dynamics. Crown defoliation by insects, however, may also influence understory resource levels and thus forest dynamics. We evaluate the effect of a forest tent caterpillar outbreak on understory light availability, soil nutrient levels and tree seedling height growth in six sites with contrasting levels of canopy defoliation in a hardwood forest in northern lower Michigan.

View Article and Find Full Text PDF

Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.

View Article and Find Full Text PDF

Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics.

View Article and Find Full Text PDF

Second-growth tropical forests are an important global carbon sink. As current knowledge on biomass accumulation during secondary succession is heavily based on chronosequence studies, direct estimates of annual rates of biomass accumulation in monitored stands are largely unavailable. We evaluated the contributions of tree diameter increment, recruitment, and mortality to annual tree biomass change during succession for three groups of tree species: second-growth (SG) specialists, generalists, and old-growth (OG) specialists.

View Article and Find Full Text PDF

Long-term juvenile growth patterns of tropical trees were studied to test two hypotheses: fast-growing juvenile trees have a higher chance of reaching the canopy ('juvenile selection effect'); and tree growth has increased over time ('historical growth increase'). Tree-ring analysis was applied to test these hypotheses for five tree species from three moist forest sites in Bolivia, using samples from 459 individuals. Basal area increment was calculated from ring widths, for trees < 30 cm in diameter.

View Article and Find Full Text PDF

Trees forage for light through optimal leaf display. Effective leaf display is determined by metamer traits (i.e.

View Article and Find Full Text PDF