Publications by authors named "Rahat Javaid"

The study focused on the efficacious performance of bimetallic Fe-Zn loaded 3A zeolite in catalytic ozonation for the degradation of highly toxic veterinary antibiotic enrofloxacin in wastewater of the pharmaceutical industry. Batch experiments were conducted in a glass reactor containing a submerged pump holding catalyst pellets at suction. The submerged pump provided the agitation and recirculation across the solution for effective contact with the catalyst.

View Article and Find Full Text PDF

Numerous attempts have been made to produce new materials and technology for renewable energy and environmental improvements in response to global sustainable solutions stemming from fast industrial expansion and population growth. Zeolites are a group of crystalline materials having molecularly ordered micropore arrangements. Over the past few years, progress in zeolites has been observed in transforming biomass and waste into fuels.

View Article and Find Full Text PDF

Textile wastewater is ranked highly contaminated among all industrial waste. During textile processing, the consumption of dyes and complex chemicals at various stages makes textile industrial wastewater highly challenging. Therefore, conventional processes based on single-unit treatment may not be sufficient to comply with the environmental quality discharge standards and more stringent guidelines for zero discharge of hazardous chemicals (ZDHC).

View Article and Find Full Text PDF

Due to continuous industrialization, the discharge of hazardous dyes has enormously disrupted the ecosystem causing environmental problems. Due to the stable recalcitrant nature of dyes, advanced catalytic ozonation processes with the latest catalyst are under investigation. Fe-RGO is an effective oxidation catalyst, and the metal loaded platform provides enhanced catalytic performance.

View Article and Find Full Text PDF

The goal of this research was to study the role of excess charges in regulating biohydrogen production from Paulownia. The excess charges were generated through charge compensation in SnO nanocatalysts by Zn doping. The maximum hydrogen yield of 335 mL was observed at 8%Zn doping with a concentration of 150 mg/L, 47% higher as compared to standard sample.

View Article and Find Full Text PDF

Removal of heavy metal pollutants from water is a challenge to water security and the environment. Therefore, in this work, multinary chalcogenide based nanoheterostructures such as ZnS/SnInS nanoheterostructure with different loading amounts were prepared. The prepared nanoheterostructures were utilized as photocatalysts for chromium (Cr(vi)) photoreduction.

View Article and Find Full Text PDF

The total annual output of synthetic dyes exceeds 7 × 10 tons. About 1,000 tons of non-biodegradable synthetic dyes are released every year into the natural streams and water sources from textile wastes. The release of these colored wastewater exerts negative impact on aquatic ecology and human beings because of the poisonous and carcinogenic repercussions of dyes involved in coloration production.

View Article and Find Full Text PDF

Pesticides are one of the main organic pollutants as they are highly toxic and extensively used worldwide. The reclamation of wastewater containing pesticides is of utmost importance. For this purpose, GO-doped metal ferrites (GO-FeO and GO-CoFeO) were prepared and characterized using scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopic techniques.

View Article and Find Full Text PDF

Fabrication of gas sensors to monitor toxic exhaust gases at high working temperatures is a challenging task due to the low sensitivity and narrow long-term stability of the devices under harsh conditions. Herein, the fabrication of a chemiresistor-type gas sensor is reported for the detection of NO gas at 600 °C. The sensing element consists of ZnFeO nanoparticles prepared via a high-energy ball milling and annealed at different temperatures (600-1000 °C).

View Article and Find Full Text PDF

Dyes are used in various industries as coloring agents. The discharge of dyes, specifically synthetic dyes, in wastewater represents a serious environmental problem and causes public health concerns. The implementation of regulations for wastewater discharge has forced research towards either the development of new processes or the improvement of available techniques to attain efficient degradation of dyes.

View Article and Find Full Text PDF

Electrochemical water splitting is an important process to produce hydrogen and oxygen for energy storage and conversion devices. However, it is often restricted by the oxygen evolution reaction (OER) due to its sluggish kinetics. To overcome the problem, precious metal oxide-based electrocatalysts, such as RuO and IrO, are widely used.

View Article and Find Full Text PDF

In this work, we propose a novel approach to dye decomposition under subcritical water conditions using a continuous-flow tubular reactor coated with thin layer of PdO as a catalyst. Remazole Brilliant Blue R was used as an example of synthetic dyes. Hydrogen peroxide was used as an environmental-friendly oxidant as it leaves no residues after treatment.

View Article and Find Full Text PDF