Exercise improves immune checkpoint inhibitor (ICI) efficacy in cancers such as melanoma; however, the mechanisms through which exercise mediates this antitumor effect remain obscure. Here, we identify that the gut microbiota plays a critical role in how exercise improves ICI efficacy in preclinical melanoma. Our study demonstrates that exercise stimulates microbial one-carbon metabolism, increasing levels of the metabolite formate, which subsequently enhances cytotoxic CD8 T cell (Tc1)-mediated ICI efficacy.
View Article and Find Full Text PDFAllergic asthma is driven by type 2 immune cells including type 2 innate lymphoid cells (ILC2s). ILC2s respond to the tissue alarmins IL-33 and IL-25, however these signals do not uniquely promote type 2 inflammation, and the factors that maintain ILC2s ability to produce type 2 cytokines are not known. Here, we show that allergen-driven tissue alarmins IL-33 and IL-25 rapidly induce IL-9, which directly upregulates the transcriptional repressor Blimp-1 through an autocrine/paracrine mechanism.
View Article and Find Full Text PDFCurr Opin Immunol
December 2024
Signal integration is central to a causal understanding of appropriately scaled inflammatory responses. Here, we discuss recent progress in our understanding of the stimulus-response linkages downstream of pro-inflammatory inputs, with special attention to (1) the impact of cell state on the specificity of evoked gene expression and (2) the critical role of the spatial context of stimulus exposure. Advances in these directions are emerging from new tools for inferring cell-cell interactions and the activities of cytokines and transcription factors in complex microenvironments, enabling analysis of signal integration in tissue settings.
View Article and Find Full Text PDFSignaling pathways that drive gene expression are typically depicted as having a dozen or so landmark phosphorylation and transcriptional events. In reality, thousands of dynamic post-translational modifications (PTMs) orchestrate nearly every cellular function, and we lack technologies to find causal links between these vast biochemical pathways and genetic circuits at scale. Here we describe the high-throughput, functional assessment of phosphorylation sites through the development of PTM-centric base editing coupled to phenotypic screens, directed by temporally resolved phosphoproteomics.
View Article and Find Full Text PDFThe Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway integrates complex cytokine signals via a limited number of molecular components, inspiring numerous efforts to clarify the diversity and specificity of STAT transcription factor function. We developed a computational framework to make global cytokine-induced gene predictions from STAT phosphorylation dynamics, modeling macrophage responses to interleukin (IL)-6 and IL-10, which signal through common STATs, but with distinct temporal dynamics and contrasting functions. Our mechanistic-to-machine learning model identified cytokine-specific genes associated with late pSTAT3 time frames and a preferential pSTAT1 reduction upon JAK2 inhibition.
View Article and Find Full Text PDFCD8+ T cell dysfunction contributes to severe respiratory viral infection outcomes in older adults. CD8+ T cells are the primary cell type responsible for viral clearance. With increasing age, CD8+ T cell function declines in conjunction with an accumulation of cytotoxic tissue-resident memory (TRM) CD8+ T cells.
View Article and Find Full Text PDFSignaling pathways that drive gene expression are typically depicted as having a dozen or so landmark phosphorylation and transcriptional events. In reality, thousands of dynamic post-translational modifications (PTMs) orchestrate nearly every cellular function, and we lack technologies to find causal links between these vast biochemical pathways and genetic circuits at scale. Here, we describe "signaling-to-transcription network" mapping through the development of PTM-centric base editing coupled to phenotypic screens, directed by temporally-resolved phosphoproteomics.
View Article and Find Full Text PDFEvolution has diversified the mammalian proteome by the generation of protein isoforms that originate from identical genes, , through alternative gene splicing or post-translational modifications, or very similar genes found in gene families. Protein isoforms can have either overlapping or unique functions and traditional chemical, biochemical, and genetic techniques are often limited in their ability to differentiate between isoforms due to their high similarity. This is particularly true in the context of highly dynamic cell signaling cascades, which often require acute spatiotemporal perturbation to assess mechanistic details.
View Article and Find Full Text PDFThe JAK-STAT pathway integrates complex cytokine signals via a limited number of molecular components, inspiring numerous efforts to clarify the diversity and specificity of STAT transcription factor function. We developed a computational workflow to make global cytokine-induced gene predictions from STAT phosphorylation dynamics, modeling macrophage responses to IL-6 and IL-10, which signal through common STATs, but with distinct temporal dynamics and contrasting functions. Our mechanistic-to-machine learning model identified select cytokine-induced gene sets associated with late pSTAT3 timeframes and a preferential pSTAT1 reduction upon JAK2 inhibition.
View Article and Find Full Text PDFSARS-CoV-2 has caused an estimated 7 million deaths worldwide to date. A secreted SARS-CoV-2 accessory protein, known as open reading frame 8 (ORF8), elicits inflammatory pulmonary cytokine responses and is associated with disease severity in COVID-19 patients. Recent reports proposed that ORF8 mediates downstream signals in macrophages and monocytes through the IL-17 receptor complex (IL-17RA, IL-17RC).
View Article and Find Full Text PDFTissue and inflammatory contexts are well appreciated to shape macrophage function to promote health or disease. However, there has been minimal progress towards understanding how these contexts modify signaling-to-transcription networks. Integration of mechanistic modeling and data-driven approaches will be crucial for investigating how cell state impacts macrophage decision-making.
View Article and Find Full Text PDFCurr Opin Immunol
February 2022
Cells integrate complex cytokine cues and other inflammatory stimuli through activation of the signal transducers and activators of transcription (STAT) family of transcription factors to drive the appropriate anti-microbial, inflammatory, and resolving functions. Here, we discuss recent progress in our understanding of mechanisms supporting STAT functional diversity. Signaling component availability and the strength of receptor and STAT interactions emerge as important determinants of immune function.
View Article and Find Full Text PDFThe ability of immune cells to sense changes associated with malignant transformation as early as possible is likely to be important for the successful outcome of cancer immunosurveillance. In this process, the immune system faces a trade-off between elimination of cells harboring premalignant or malignant changes, and autoimmune pathologies. We hypothesized that the immune system has therefore evolved a threshold for the stage of transformation from normal to fully malignant cells that first provides a threat (danger) signal requiring a response.
View Article and Find Full Text PDFTissue-specific cytokine stimuli orchestrate specialized homeostatic functions of resident macrophages. In the lung, steady-state signaling by the cytokine GM-CSF is critical for alveolar macrophage (AM) development and function. Here, we showed that CISH, a suppressor of cytokine signaling (SOCS) family member that is acutely induced by diverse cytokine stimuli in many tissues, was expressed constitutively in AMs in response to steady-state GM-CSF signaling.
View Article and Find Full Text PDFTreg-mediated immunosuppression must be tightly regulated to support immunity while limiting tissue damage. In this issue of Cell, Wong et al. and Marangoni et al.
View Article and Find Full Text PDFActivation of NF-κB is a common downstream consequence of inflammatory stimulation, yet it achieves stimulus-specific transcriptional responses. In this issue of Immunity, Adelaja et al. use single-cell imaging and computational approaches to understand temporal features of NF-κB dynamics that transmit information about immune threats.
View Article and Find Full Text PDFImmunohorizons
February 2021
Clustered regularly interspaced short palindromic repeats (CRISPR)-based methods have revolutionized genome engineering and the study of gene-phenotype relationships. However, modifying cells of the innate immune system, especially macrophages, has been challenging because of cell pathology and low targeting efficiency resulting from nucleic acid activation of intracellular sensors. Likewise, lymphocytes of the adaptive immune system are difficult to modify using CRISPR-enhanced homology-directed repair because of inefficient or toxic delivery of donor templates using transient transfection methods.
View Article and Find Full Text PDFDespite existing evidence for tuning of innate immunity to different classes of bacteria, the molecular mechanisms used by macrophages to tailor inflammatory responses to specific pathogens remain incompletely defined. By stimulating mouse macrophages with a titration matrix of TLR ligand pairs, we identified distinct stimulus requirements for activating and inhibitory events that evoked diverse cytokine production dynamics. These regulatory events were linked to patterns of inflammatory responses that distinguished between Gram-positive and Gram-negative bacteria, both in vitro and after in vivo lung infection.
View Article and Find Full Text PDFMacrophage activation by bacterial LPS leads to induction of a complex inflammatory gene program dependent on numerous transcription factor families. The transcription factor Ikaros has been shown to play a critical role in lymphoid cell development and differentiation; however, its function in myeloid cells and innate immune responses is less appreciated. Using comprehensive genomic analysis of Ikaros-dependent transcription, DNA binding, and chromatin accessibility, we describe unexpected dual repressor and activator functions for Ikaros in the LPS response of murine macrophages.
View Article and Find Full Text PDFDespite the widespread use of glucocorticoids (GCs), their anti-inflammatory effects are not understood mechanistically. Numerous investigations have examined the effects of glucocorticoid receptor (GR) activation prior to inflammatory challenges. However, clinical situations are emulated by a GC intervention initiated in the midst of rampant inflammatory responses.
View Article and Find Full Text PDFTLR4 signalling through the MyD88 and TRIF-dependent pathways initiates translocation of the transcription factor NF-κB into the nucleus. In cell population studies using mathematical modeling and functional analyses, Cheng et al. suggested that LPS-driven activation of MyD88, in the absence of TRIF, impairs NF-κB translocation.
View Article and Find Full Text PDFCell-to-cell variation in gene expression and the propagation of such variation (PoV or "noise propagation") from one gene to another in the gene network, as reflected by gene-gene correlation across single cells, are commonly observed in single-cell transcriptomic studies and can shape the phenotypic diversity of cell populations. While gene network "rewiring" is known to accompany cellular adaptation to different environments, how PoV changes between environments and its underlying regulatory mechanisms are less understood. Here, we systematically explored context-dependent PoV among genes in human macrophages, utilizing different cytokines as natural perturbations of multiple molecular parameters that may influence PoV.
View Article and Find Full Text PDFThe innate immune system is the organism's first line of defense against pathogens. Pattern recognition receptors (PRRs) are responsible for sensing the presence of pathogen-associated molecules. The prototypic PRRs, the membrane-bound receptors of the Toll-like receptor (TLR) family, recognize pathogen-associated molecular patterns (PAMPs) and initiate an innate immune response through signaling pathways that depend on the adaptor molecules MyD88 and TRIF.
View Article and Find Full Text PDF