Publications by authors named "Quang Toan Dinh"

Pesticide residues are regularly found in surface water, which could be dangerous for freshwater ecosystems and biodiversity. Pesticides may enter waters through a variety of pathways, but runoff from irrigation or precipitation has the highest quantities. Previous studies analyzing the pesticides pollution or ecological risks of pesticides focused on few regions (e.

View Article and Find Full Text PDF

Analysis of temporal patterns of high-dimensional time-series water quality data is essential for pollution management worldwide. This study has applied dynamic factor analysis (DFA) and cluster analysis (CA) to analyze time-series water quality data monitored at the five stations installed along the La Buong river in Southern Vietnam. Application of the DFA identified two types of temporal patterns, one of the run-off driven parameters (total suspended solid (TSS), turbidity, and iron) and the other of diffuse source pollution.

View Article and Find Full Text PDF

Cadmium (Cd) has strong mobility and could cause toxicity to plants, and selenium (Se) can effectively detoxify Cd stress. However, differences in the detoxification effects of different species and dosages of exogenous Se on Cd and its mechanism are still unclear. In this study, a pot experiment was conducted to determine the effects of different rates of selenite and selenate application on radish growth, the uptake and translocation of Cd, and the fractions of Cd transformation in native Cd-contaminated soil.

View Article and Find Full Text PDF

Feasible countermeasures to mitigate mercury (Hg) accumulation and its deleterious effects on crops are urgently needed worldwide. Selenium (Se) fertilizer application is a cost-effective strategy to reduce Hg concentrations, promote agro-environmental sustainability and food safety, and decrease the public health risk posed by Hg-contaminated soils and its accumulation in food crops. This holistic review focuses on the processes and detoxification mechanisms of Hg in whole soil-plant systems after Se application.

View Article and Find Full Text PDF

Selenium (Se)-enriched wheat can be improved by altering Se sources and selecting wheat cultivars. Such improvement can affect subcellular distribution and speciation of Se in wheat. Thus, a pot experiment was conducted to investigate Se uptake and distribution when Se was applied as selenite or selenate at low and high rates (1 and 10 mg kg, respectively).

View Article and Find Full Text PDF

Knowledge of the Se fractionation and the role of dissolved organic matter (DOM) in soil is the key to understanding Se mobility and its bioavailability in the soil-plant system. In this study, single extractions using phosphate-buffer (PBS), sequential extraction procedures (SEP), and diffusive gradients in thin-films (DGT) were used to measure Se bioavailability in soil supplemented with selenite and organic amendment (cow and chicken manures). Selenium fraction was isolated into DOM-Se fractions, such as hydrophilic acid-bound Se (HY-Se), fulvic acid-bound Se (FA-Se), humic acid-bound Se (HA-Se), and hydrophobic organic neutral-bound Se (HON-Se), by a rapid batch technique using XAD-8 resin (AMBERLITE XAD™, USA).

View Article and Find Full Text PDF

Understanding the effects of processing on the Se content and bioaccessibility in food is critical in guiding the development of Se-enriched products. In this study, Se-enriched Pleurotus eryngii was obtained by applying different Se supplements to the substrate. Selenium content and its bioaccessibility among raw and processed fruit bodies were compared.

View Article and Find Full Text PDF

Straw amendment and plant root exudates modify the quality and quantities of soil dissolved organic matter (DOM) and then manipulate the fractions of soil selenium (Se) and its bioavailability. Two typical soils with distinct pH were selected to investigate the effect of different contributors on DOM-Se in soil. The mechanisms relying on the variation in DOM characteristics (quality, quantity and composition) were explored by UV-Vis, ATR-FTIR and 3D-EEM.

View Article and Find Full Text PDF

Selenium (Se) and zinc (Zn) are two important trace elements for human being and animals. The interaction between Se and Zn on the bioavailability of Zn in soil is still unclear. Therefore, pot experiments exposed to different dosages of zinc sulfate (ZnSO) (0, 20, and 50 mg/kg soil) and sodium selenite (NaSeO) (0, 0.

View Article and Find Full Text PDF

There are a lack of systematic studies comparing the effects of foliar-applied selenium (Se) with different Se sources at different growth stages in wheat. Herein, we biofortified wheat via the foliar application of selenite and selenate at different rates and different stages under field conditions. Results showed that foliar-applied selenate and selenite had no significant effect either on wheat biomass or grain yield (p < 0.

View Article and Find Full Text PDF

Due to the two-dimensional effect of selenium (Se) to health, which form of Se is most effective for increasing the bioaccessible Se content in P. ostreatus and whether these products have potential health risks are worth considering. Three Se supplements were applied at different application rates into substrates for cultivating P.

View Article and Find Full Text PDF

A generally accepted method to predict selenium (Se) bioavailability of long-term contaminated soils has not yet been established, even if risk assessments in selenosis areas are crucial. In this study, a set of methods were tested to assess the bioavailability of Se to field maize. Fifty maize (Zea mays L.

View Article and Find Full Text PDF

As a staple food for people worldwide, wheat is one of the major exposure pathways for heavy metals (HMs). Therefore, the safety of the wheat grain directly affects food security and human health. Long-term agricultural activities are sources of heavy metal pollution in farmland ecosystems.

View Article and Find Full Text PDF

Selenite and selenate are two main selenium (Se) forms absorbed by plants. The comparative effects of selenite and/or selenate on Se uptake and translocation in plants in spite of their coexistence in the environment are still unclear. Therefore, tomato (Solanum lycopersicum L.

View Article and Find Full Text PDF

A better understanding of the benefits of selenium (Se) fertilization to alleviate the toxicity of mercury (Hg) on plants and of the underlying mechanisms involved in Hg stress is important for the remediation of soils contaminated by Hg. This study is aimed to explore the effects of the application of selenite to alleviate the toxicity of Hg in soils to plants and related mechanisms involved in this process. The chemical (Hg uptake of pak choi), biological (root and shoot length, root and shoot weight) and physiological effects (antioxidant enzyme activities, non-enzymatic antioxidant contents (proline) and lipid peroxidation products (malondialdehyde)) produced over plants by the application of different doses of Hg and Se to soil has been investigated through a pot experiment, which was conducted with exposure to different dosages of mercuric chloride (0, 1.

View Article and Find Full Text PDF

To exploit the plant byproducts from selenium (Se) biofortification and reduce environmental risk of inorganic Se fertilizer, pot experiment was conducted in this study. The effects of Se-enriched wheat (Triticum aestivum L.) straw (WS + Se) and pak choi (Brassica chinensis L.

View Article and Find Full Text PDF

This paper reviewed the Se in the environment (including total Se in soil, water, plants, and food), the daily Se intake and Se content in human hair were also examined to elucidate Se distribution in the environment and its effects on human health in China. Approximately 51% of China is Se deficiency in soil, compared with 72% in the survey conducted in 1989. Low Se concentrations in soil, water, plants, human diet and thus human hair were found in most areas of China.

View Article and Find Full Text PDF

Selenite (Se (IV)) and selenate (Se (IV)) have recently been demonstrated to be equally effective in inhibiting mercury (Hg) phytotoxicity to plants. This assertion is still unclear. In this study, we aimed to explore the potential effects of Se species (Se and Se) on the inhibition of the mercury (Hg) bioavailability to pak choi in dry land.

View Article and Find Full Text PDF

Organic Acids (OAs) are important components in the rhizosphere soil and influence Se bioavailability in soil. OAs have a bidirectional contrasting effect on Se bioavailability. Understanding the interaction of OAs with Se is essential to assessing Se bioavailability in soil and clarifying the role of OAs in controlling the behavior and fate of Se in soil.

View Article and Find Full Text PDF