Publications by authors named "Qing-Wang Xue"

Simultaneous sensitive and precise determination of multibiomarkers is of great significance for improving detection efficiency, reducing diagnosis and treatment expenses, and elevating survival rates. However, the development of simple and portable biosensors for simultaneous determination of multiplexed targets in biological fluids still faces challenges. Herein, a unique and versatile immobilization-free dual-target electrochemical biosensing platform, which combines distinguishable magnetic signal reporters with buoyancy-magnetism separation, was designed and constructed for simultaneous detection of carcinoembryonic (CEA) and α-fetoprotein (AFP) in intricate biological fluids.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a new dual-potential ratiometric electrochemiluminescence (ECL) sensor for detecting carcinoembryonic antigen (CEA), using a single emitter (luminol) and coreactant (hydroxyl radicals) within a mild potential range.
  • The sensor works by measuring the changes in ECL intensity as CEA affects the oxidation and reduction reactions of luminol and hydroxyl radicals, leading to significant variations in the detected signals.
  • This innovative approach allows for sensitive CEA detection with a limit of detection (LOD) of 41.85 fg/mL, while also showcasing strong performance in specificity, stability, and reproducibility during practical tests.
View Article and Find Full Text PDF

Compared with single signal detection, a ratiometric biosensor could offer more accurate and reliable results. Here, a ratiometric electrochemical biosensor for the sensitive and accurate detection of dopamine was developed based on the strong adsorption ability of MXene-Au toward methylene blue, an inner reference element. This ratiometric sensing strategy opened up a new avenue for the development of a ratiometric platform.

View Article and Find Full Text PDF

Rapid and accurate detection of biomolecules is of vital importance for the diagnosis of disease and for performing timely treatments. The point-of-care analysis of cancer biomarkers in the blood with low cost and easy processing is still challenging. Herein, an advanced and robust strategy, which integrates the buoyant recognition probe with the magnetic reporter probe in one solution, was first proposed for immobilization-free electrochemical immunosensing.

View Article and Find Full Text PDF

DNA nanomachines have shown potential application in the construction of various biosensors. Here, an electrochemiluminescence biosensor for the sensitive detection of miRNA-21 were reported based on three-dimensional (3D) DNA nanomachine and duplex-specific nuclease (DSN)-mediated target recycle amplification strategy. First, the bipedal DNA walkers were obtained by DSN-mediated digestion reaction initiated by target miRNA-21.

View Article and Find Full Text PDF

Ratiometric electrochemiluminescence (ECL) sensors can efficiently remove environmental interference to attain precise detection. Nonetheless, two eligible luminophores or coreactants were usually needed, increasing the complexity and restricting their practical application. In this study, a single luminophore of luminol with a single coreactant of HO was employed to construct a dual-potential ratiometric ECL sensor for the detection of carcinoembryonic antigen (CEA).

View Article and Find Full Text PDF

As well known, the electrochemiluminescence (ECL) of tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)) heavily relies on highly positive or negative triggered voltage, prejudicing the detection toward the bio-molecules. In this work, Ru(bpy) could generate enhanced and stable ECL at a low potential of 0.05 V (vs.

View Article and Find Full Text PDF

Structural modulation of core-shell silver nanoclusters from the inside is a huge challenge but of great importance in their syntheses. Herein, two silver nanoclusters [Ag S @Ag ] (SD/Ag45b) and [Ag S @Ag ] (SD/Ag51a) are isolated in the presence of different kinds of sulfonic acids. Uniquely, SD/Ag45b and SD/Ag51a show typical core-shell structures with the similar Ag shell but different cores.

View Article and Find Full Text PDF

Ultra-high pressure (UHP) is a novel non-thermal pretreatment method in food processing for improving the extraction yield of polyphenols and functional properties. The present work investigated the phenolic profiles, antioxidant activities, and cytoprotective effects of the free, esterified, and insoluble-bound phenolic fractions from mango leaves before and after ultra-high pressure (UHP) treatment. UHPLC-Q-Orbitrap-MS/MS analysis resulted in the identification of 42 phenolic compounds in the different phenolic forms.

View Article and Find Full Text PDF

Although chirality is an ever-present characteristic in biology and some artificial molecules, controlling the chirality and demystifying the chirality origin of complex assemblies remain challenging. Herein, we report two homochiral Ag nanoclusters with inherent chirality originated from identical rotation of six square faces on a Ag cube driven by intra-cluster π···π stacking interaction between pntp (Hpntp = p-nitrothiophenol) ligands. The spontaneous resolution of the racemic (SD/rac-Ag14a) to homochiral nanoclusters (SD/L-Ag14 and SD/R-Ag14) can be realized by re-crystallizing SD/rac-Ag14a in acetonitrile, which promotes the homochiral crystallization in solid state by forming C-H···O/N hydrogen bonds with nitro oxygen atoms in pntp or aromatic hydrogen atoms in dpph (dpph = 1,6-bis(diphenylphosphino)hexane) on Ag nanocluster.

View Article and Find Full Text PDF

A novel ratiometric electrochemical biosensing strategy based on T7 exonuclease (T7 Exo)-assisted homogenous target recycling coupling hairpin assembly triggered dual-signal output was proposed for the accurate and sensitive detection of microRNA-141 (miRNA-141). Concretely, in the presence of target miRNA, abundant signal transduction probes were released via the T7 Exo-assisted homogenous target recycling amplification, which could be captured by the specially designed ferrocene-labeled hairpin probe (Fc-H1) on -electrode interface and triggered the nonenzymatic catalytic hairpin assembly (Fc-H1 + MB-H2) to realize the cascade signal amplification and dual-signal output. Through such a conformational change process, the electrochemical signal of Fc (IFc) and MB (IMB) is proportionally and substantially decreased and increased.

View Article and Find Full Text PDF

A DNA immobilization-free ECL aptasensor was developed for the detection of 8-hydroxy-2'-deoxygunosine based on the diffusion mediated ECL quenching effect. This ECL aptasensor exhibited a high sensitivity and low detection limit by combining homogeneous DNA reaction with dual signal amplifications: target-induced multi-DNA release and Exo I-assisted target recycling.

View Article and Find Full Text PDF

8-Hydroxy-2'-deoxyguanosine (8-OH-dG) is a principal stable marker of DNA oxidative damage. Sensitive and specific detection of 8-OH-dG is of great importance for early disease diagnosis. In this paper, we developed an electrochemiluminescence aptasensor for 8-OH-dG detection based on target induced multi-DNA release and nicking enzyme signaling amplification strategy.

View Article and Find Full Text PDF

In this work, an ultrasensitive aptasensor for the detection of Mucin 1 (MUC1) was presented based on the target-induced catalytic hairpin assembly combined with excellent mimic peroxidase performance of PtPd bimetallic nanoparticles (PtPdNPs). Traditionally, the cyclic reuse of target protein was achieved by protein conversion with enzyme cleavage or polymerization, which is costly and complex. However, in this work, it can be performed by simple strand displacement.

View Article and Find Full Text PDF

A versatile label-free electrochemical biosensor based on dual enzyme assisted multiple amplification strategy was developed for ultrasensitive detection of circulating tumor DNA (ctDNA). The biosensor consists of a triple-helix molecular switch (THMS) as molecular recognition and signal transduction probe, ribonuclease HII (RNase HII) and terminal deoxynucleotidyl transferase (TdT) as dual enzyme assisted multiple amplification accelerator. The presence of target ctDNA could open THMS and trigger RNase HII-assisted homogenous target recycling amplification to produce substantial signal transduction probe (STP).

View Article and Find Full Text PDF

In the present work a highly sensitive and selective aptasensor was developed for the determination of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) based on the hybridization chain reaction (HCR) signal amplification. It was observed that the aptamer of 8-OH-dG could hybridize with the capture DNA immobilized on the gold electrode with a sticky tail left, which initiated the HCR and led to the formation of extended dsDNA structure on the electrode surface. Then the electroactive species ([Ru(NH)], RuHex) intercalated into the dsDNA grooves to generate the amplified signal.

View Article and Find Full Text PDF

Bisphenol A (BPA) detection in drinking water and food packaging materials has attracted much attention since the discovery that BPA can interfere with normal physiological processes and cause adverse health effects. Here, we constructed a label-free aptamer fluorescent assay for selective and sensitive detection of BPA based on the rolling circle amplification (RCA)/Exonuclease III (Exo III)-combined cascade amplification strategy. First, the duplex DNA probe (RP) with anti-BPA aptamer and trigger sequence was designed for BPA recognition and signal amplification.

View Article and Find Full Text PDF