Publications by authors named "Puiying A Mak"

The salt-inducible kinases (SIK) 1-3 are key regulators of pro- versus anti-inflammatory cytokine responses during innate immune activation. The lack of highly SIK-family or SIK isoform-selective inhibitors suitable for repeat, oral dosing has limited the study of the optimal SIK isoform selectivity profile for suppressing inflammation in vivo. To overcome this challenge, we devised a structure-based design strategy for developing potent SIK inhibitors that are highly selective against other kinases by engaging two differentiating features of the SIK catalytic site.

View Article and Find Full Text PDF

Natural killer group 2D (NKG2D) is a homodimeric activating immunoreceptor whose function is to detect and eliminate compromised cells upon binding to the NKG2D ligands (NKG2DL) major histocompatibility complex (MHC) molecules class I-related chain A (MICA) and B (MICB) and UL16 binding proteins (ULBP1-6). While typically present at low levels in healthy cells and tissue, NKG2DL expression can be induced by viral infection, cellular stress or transformation. Aberrant activity along the NKG2D/NKG2DL axis has been associated with autoimmune diseases due to the increased expression of NKG2D ligands in human disease tissue, making NKG2D inhibitors an attractive target for immunomodulation.

View Article and Find Full Text PDF
Article Synopsis
  • NKG2D is a receptor that helps activate immune responses against infections and stress but can also contribute to chronic inflammation and autoimmune diseases, making it a target for new treatments.
  • The study outlines a strategy for identifying small molecules that can inhibit NKG2D's protein interactions via a unique mechanism that alters the receptor's structure.
  • Researchers used various biochemical methods and drug design techniques to enhance the effectiveness and properties of one series of inhibitors, showing it's feasible to disrupt the NKG2D interaction with its ligands through allosteric modulation.
View Article and Find Full Text PDF

Background: Image-based high throughput (HT) screening provides a rich source of information on dynamic cellular response to external perturbations. The large quantity of data generated necessitates computer-aided quality control (QC) methodologies to flag imaging and staining artifacts. Existing image- or patch-level QC methods require separate thresholds to be simultaneously tuned for each image quality metric used, and also struggle to distinguish between artifacts and valid cellular phenotypes.

View Article and Find Full Text PDF

Available corrector drugs are unable to effectively rescue the folding defects of CFTR-ΔF508 (or CFTR-F508del), the most common disease-causing mutation of the cystic fibrosis transmembrane conductance regulator, a plasma membrane (PM) anion channel, and thus to substantially ameliorate clinical phenotypes of cystic fibrosis (CF). To overcome the corrector efficacy ceiling, here we show that compounds targeting distinct structural defects of CFTR can synergistically rescue mutant expression and function at the PM. High-throughput cell-based screens and mechanistic analysis identified three small-molecule series that target defects at nucleotide-binding domain (NBD1), NBD2 and their membrane-spanning domain (MSD) interfaces.

View Article and Find Full Text PDF

An ultrahigh-throughput screen was performed to identify novel small molecule inhibitors of influenza virus replication. The screen employed a recombinant influenza A/WSN/33 virus expressing luciferase and yielded a hit rate of 0.5%, of which the vast majority showed little cytotoxicity at the inhibitory concentration.

View Article and Find Full Text PDF

High-throughput screening of 700,000 small molecules has identified 235 inhibitors of the GroEL/GroES-mediated refolding cycle. Dose-response analysis of a subset of these hits revealed that 21 compounds are potent inhibitors of GroEL/GroES-mediated refolding (IC50 <10 μM). The screening results presented herein represent the first steps in a broader aim of developing molecular probes to study chaperonin biochemistry and physiology.

View Article and Find Full Text PDF

Growing evidence suggests that the presence of a subpopulation of hypoxic non-replicating, phenotypically drug-tolerant mycobacteria is responsible for the prolonged duration of tuberculosis treatment. The discovery of new antitubercular agents active against this subpopulation may help in developing new strategies to shorten the time of tuberculosis therapy. Recently, the maintenance of a low level of bacterial respiration was shown to be a point of metabolic vulnerability in Mycobacterium tuberculosis.

View Article and Find Full Text PDF

Complement-mediated bactericidal activity has long been regarded as the serological correlate of protective immunity against Neisseria meningitidis. This was affirmed in 2005 at a WHO-sponsored meningococcal serology standardization workshop. The assay currently employed by most laboratories involves determining surviving bacterial colony counts on agar as a readout which is labor-intensive, time-consuming, and not amendable to rapid data analysis for clinical trials.

View Article and Find Full Text PDF
Article Synopsis
  • Candidate antibacterials are often initially evaluated based on lab conditions (in vitro), which may not accurately reflect how they perform in real infections (in vivo).
  • During research for new anti-tubercular drugs, new compounds called pyrimidine-imidazoles (PIs) were discovered, but they showed promising lab results without effectiveness in actual infections.
  • The study highlighted that the way these PIs interacted with bacterial metabolism, specifically glycerol metabolism, led to harmful effects on the bacteria, showing the need for better in vitro conditions that mimic real-life scenarios in infections for effective antibiotic discovery.
View Article and Find Full Text PDF

High-throughput cellular profiling has successfully stimulated early drug discovery pipelines by facilitating targeted as well as opportunistic lead finding, hit annotation and SAR analysis. While automation-friendly universal assay formats exist to address most established drug target classes like GPCRs, NHRs, ion channels or Tyr-kinases, no such cellular assay technology is currently enabling an equally broad and rapid interrogation of the Ser/Thr-kinase space. Here we present the foundation of an emerging cellular Ser/Thr-kinase platform that involves a) coexpression of targeted kinases with promiscuous peptide substrates and b) quantification of intracellular substrate phosphorylation by homogeneous TR-FRET.

View Article and Find Full Text PDF

The liver X receptors (LXRalpha and beta) are nuclear receptors that coordinate carbohydrate and lipid metabolism. Treatment of insulin-resistant mice with synthetic LXR ligands enhances glucose tolerance, inducing changes in gene expression expected to decrease hepatic gluconeogenesis (via indirect suppression of gluconeogenic enzymes) and increase peripheral glucose disposal (via direct up-regulation of glut4 in fat). To evaluate the relative contribution of each of these effects on whole-body insulin sensitivity, we performed hyperinsulinemic-euglycemic clamps in high-fat-fed insulin-resistant rats treated with an LXR agonist or a peroxisome proliferator-activated receptor gamma ligand.

View Article and Find Full Text PDF

We have identified a novel liver X receptor (LXR) agonist (2) that activates the LXRbeta subtype with selectivity over LXRalpha. LXRbeta selectivity was confirmed using macrophages derived from LXR mutant mice. Despite its selectivity and modest potency, the compound can induce APO-AI-dependent cholesterol efflux from macrophages with full efficacy.

View Article and Find Full Text PDF

The liver has a central role in glucose homeostasis, as it has the distinctive ability to produce and consume glucose. On feeding, glucose influx triggers gene expression changes in hepatocytes to suppress endogenous glucose production and convert excess glucose into glycogen or fatty acids to be stored in adipose tissue. This process is controlled by insulin, although debate exists as to whether insulin acts directly or indirectly on the liver.

View Article and Find Full Text PDF

Insulin resistance is a primary defect in type 2 diabetes characterized by impaired peripheral glucose uptake and insufficient suppression of hepatic glucose output. Insulin signaling inhibits liver glucose production by inducing nuclear exclusion of the gluconeogenic transcription factor FOXO1 in an Akt-dependent manner. Through the concomitant application of genome-scale functional screening and quantitative image analysis, we have identified PTP-MEG2 as a modulator of insulin-dependent FOXO1 subcellular localization.

View Article and Find Full Text PDF

Macrophages play a central role in the development of atherosclerosis through the accumulation of oxidized LDL (oxLDL). AIM (Spalpha/Api6) has previously been shown to promote macrophage survival; however, its function in atherogenesis is unknown. Here we identify AIM as a critical factor that protects macrophages from the apoptotic effects of oxidized lipids.

View Article and Find Full Text PDF

The liver X receptors (LXRs) are nuclear receptors with established roles in the regulation of lipid metabolism. We now show that LXR signaling not only regulates macrophage cholesterol metabolism but also impacts antimicrobial responses. Mice lacking LXRs are highly susceptible to infection with the intracellular bacteria Listeria monocytogenes (LM).

View Article and Find Full Text PDF

Phospholipid transfer protein (PLTP) in plasma promotes phospholipid transfer from triglyceride-rich lipoproteins to HDL and plays a major role in HDL remodeling. Recent in vivo observations also support a key role for PLTP in cholesterol metabolism. Our immunohistochemical analysis of human carotid endarterectomy samples identified immunoreactive PLTP in areas that colocalized with CD68-positive macrophages, suggesting that PLTP could be produced locally by intimal macrophages.

View Article and Find Full Text PDF

Affymetrix microarray data and Northern blot assays demonstrated that phospholipid transfer protein (PLTP) was induced 6-fold when either murine or human macrophages were incubated in the presence of ligands for the liver X receptor (LXR) and the retinoid X receptor. Two functional LXR response elements (LXREs) were identified and characterized in the proximal promoter of the human PLTP gene. One LXRE corresponds to a traditional direct repeat separated by 4 bp.

View Article and Find Full Text PDF

The Liver X Receptors (LXR alpha, NR1H3; LXR beta, NR1H2) encode highly homologous transcription factors that are members of the nuclear receptor superfamily of proteins. Both LXR alpha and LXR beta form heterodimers with the obligate partner 9-cis retinoic acid receptor alpha (RXR alpha; NR2B1). LXR/RXR heterodimers function as sensors for cellular oxysterols and, when activated by these agonists, increase the expression of genes that control sterol and fatty acid metabolism/homeostasis.

View Article and Find Full Text PDF

Lipid-loaded macrophage "foam cells" accumulate in the subendothelial space during the development of fatty streaks and atherosclerotic lesions. To better understand the consequences of such lipid loading, murine peritoneal macrophages were isolated and incubated with ligands for two nuclear receptors, liver X receptor (LXR) and retinoic acid receptor (RXR). Analysis of the expressed mRNAs using microarray technology led to the identification of four highly induced genes that encode apolipoproteins E, C-I, C-IV, and C-II.

View Article and Find Full Text PDF