98%
921
2 minutes
20
An ultrahigh-throughput screen was performed to identify novel small molecule inhibitors of influenza virus replication. The screen employed a recombinant influenza A/WSN/33 virus expressing luciferase and yielded a hit rate of 0.5%, of which the vast majority showed little cytotoxicity at the inhibitory concentration. One of the top hits from this screen, designated S20, inhibits HA-mediated membrane fusion. S20 shows potent antiviral activity (IC = 80 nM) and low toxicity (CC = 40 μM), yielding a selectivity index of 500 and functionality against all of the group 1 influenza A viruses tested in this study, including the pandemic H1N1 and avian H5N1 viruses. Mechanism of action studies proved a direct S20-HA interaction and showed that S20 inhibits fusion by stabilizing the prefusion conformation of HA. In silico docking studies were performed, and the predicted binding site in HA2 corresponds with the area where resistance mutations occurred and correlates with the known role of this region in fusion. This high-throughput screen has yielded many promising new lead compounds, including S20, which will potentially shed light on the molecular mechanisms of viral infection and serve as research tools or be developed for clinical use as antivirals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4426349 | PMC |
http://dx.doi.org/10.1021/id500022h | DOI Listing |
Nature
September 2025
Centre for Structural Systems Biology (CSSB), Hamburg, Germany.
The nine human herpesviruses, including herpes simplex virus 1 and 2, human cytomegalovirus and Epstein-Barr virus, present a significant burden to global public health. Their envelopes contain at least ten different glycoproteins, which are necessary for host cell tropism, attachment and entry. The best conserved among them, glycoprotein B (gB), is essential as it performs membrane fusion by undergoing extensive rearrangements from a prefusion to postfusion conformation.
View Article and Find Full Text PDFEBioMedicine
August 2025
Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Life Science Academy, Beijing, 102209, China; University of Chinese Academy of Sciences, Beijing, 101408, China. Electronic address:
Background: Respiratory syncytial virus (RSV) poses a significant public health threat, particularly to children and the elderly. Two protein-based vaccines and one mRNA vaccine have been approved, all targeting the prefusion conformation of the fusion (F) trimer. However, it has been reported that the epitope activity of the F protein gradually declines during storage, resulting in a reduction of the vaccines' immunogenicity.
View Article and Find Full Text PDFSci Adv
August 2025
Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.
Human endogenous retroviruses (HERVs) are remnants of ancient infections that comprise ~8% of the human genome. The HERV-K envelope glycoprotein (Env) is aberrantly expressed in cancers, autoimmune disorders, and neurodegenerative diseases, and is targeted by patients' own antibodies. However, a lack of structural information has limited molecular and immunological studies of the roles of HERVs in disease.
View Article and Find Full Text PDFJ Virol
August 2025
Patronus Biotech Co. Ltd., Guangzhou, China.
Respiratory syncytial virus (RSV) is a global public health concern. Currently, RSV vaccines are approved only for use in older adults, while preventing the disease in infants and children, as well as ensuring vaccine durability, remains a significant challenge. The pre-fusion conformation of the RSV fusion (F) glycoprotein is a primary target for vaccine development, as it elicits significantly higher neutralizing antibody titers than the post-fusion form.
View Article and Find Full Text PDFNat Commun
August 2025
Changping Laboratory, Beijing, China.
Stabilizing the RSV F protein in its prefusion conformation is crucial for effective vaccine development but has remained a significant challenge. Traditional stabilization methods, such as disulfide bonds and cavity-filling mutations, have been labor-intensive and have often resulted in suboptimal expression levels. Here, we report the design of an RSV prefusion F (preF) antigen using a proline-scanning strategy, incorporating seven proline substitutions to achieve stabilization.
View Article and Find Full Text PDF