Pine needles are specialized leaves bearing distinctive anatomical features whose function is to minimize water loss. At the molecular level, needle specialization is expected to lead to heterogeneity in cell wall (CW) composition. By immunohistochemical analysis of CW epitopes in maritime pine (Pinus pinaster) needles, we described the variability of CW composition in all tissues, discussing its possible relationship with the cell function.
View Article and Find Full Text PDFThe plant cell wall is a plastic structure of variable composition that constitutes the first line of defence against environmental challenges. Lodging and drought are two stressful conditions that severely impact maize yield. In a previous work, we characterised the cell walls of two maize inbreds, EA2024 (susceptible) and B73 (resistant) to stalk lodging.
View Article and Find Full Text PDFThe mechanisms underlying susceptibility to and defense against Pseudomonas syringae (Pph) of the common bean (Phaseolus vulgaris) have not yet been clarified. To investigate these, 15-day-old plants of the variety Riñón were infected with Pph and the transcriptomic changes at 2 h and 9 h post-infection were analysed. RNA-seq analysis showed an up-regulation of genes involved in defense/signaling at 2 h, most of them being down-regulated at 9 h, suggesting that Pph inhibits the transcriptomic reprogramming of the plant.
View Article and Find Full Text PDFThis Special Issue, entitled "Plant Cell Wall Plasticity under Stress Situations", is a compilation of five articles, whose authors deepen our understanding of the roles of different cell wall components under biotic and abiotic stress [...
View Article and Find Full Text PDFThe cell wall (CW) is a dynamic structure extensively remodeled during plant growth and under stress conditions, however little is known about its roles during the immune system priming, especially in crops. In order to shed light on such a process, we used the - (Pph) pathosystem and the immune priming capacity of 2,6-dichloroisonicotinic acid (INA). In the first instance we confirmed that INA-pretreated plants were more resistant to Pph, which was in line with the enhanced production of HO of the primed plants after elicitation with the peptide flg22.
View Article and Find Full Text PDFCommon bean () is attacked by several pathogens such as the biotrophic gamma-proteobacterium pv. . To study the pv.
View Article and Find Full Text PDFLodging is one of the causes of maize (Zea mays L.) production losses worldwide and, at least, the resistance to stalk lodging has been positively correlated with stalk strength. In order to elucidate the putative relationship between cell wall, stalk strength and lodging resistance, twelve maize inbreds varying in rind penetration strength and lodging resistance were characterized for cell wall composition and structure.
View Article and Find Full Text PDFPlant cell and organ cultures of , a medicinal plant whose roots are used by the Tarahumara Indians of Chihuahua, Mexico, to relieve several ailments, were established to identify and quantify some chromenes with biological activity, such as encecalin, and to evaluate their potential for biotechnological production. Gas chromatography-mass spectrometry (GC-MS) analysis corroborated the presence of quantifiable amounts of encecalin in cell cultures (callus and cell suspensions). In addition, hairy roots were obtained through three transformation protocols (prick, 45-s sonication and co-culture), using wild type A4.
View Article and Find Full Text PDFThe habituation of cultured cells to cellulose biosynthesis inhibitors such as dichlobenil (dichlorobenzonitrile, DCB) has proven a valuable tool to elucidate the mechanisms involved in plant cell wall structural plasticity. Our group has demonstrated that maize cells cope with DCB through a modified cell wall in which cellulose is replaced by a more extensive network of highly cross-linked feruloylated arabinoxylans. In order to gain further insight into the contribution of phenolics to the early remodelling of cellulose-deficient cell walls, a comparative HPLC-PAD analysis was carried out of hydroxycinnamates esterified into nascent and cell wall polysaccharides obtained from non-habituated (NH) and habituated to low DCB concentrations (1.
View Article and Find Full Text PDFFront Plant Sci
October 2019
Many phytopathogenic fungi produce necrosis and ethylene inducing peptide 1 (Nep1-like proteins or NLP) that trigger leaf necrosis and the activation of defense mechanisms. These proteins have been widely studied in plant pathogens as or between others, but little is known about their biological roles in grapevine trunk pathogens. Advances in the sequencing of genomes of several fungi involved in grapevine trunk diseases have revealed that these proteins are present in several copies in their genomes.
View Article and Find Full Text PDFAncymidol inhibits the incorporation of cellulose into cell walls of maize cell cultures in a gibberellin-independent manner, impairing cell growth; the reduction in the cellulose content is compensated with xylans. Ancymidol is a plant growth retardant which impairs gibberellin biosynthesis. It has been reported to inhibit cellulose synthesis by tobacco cells, based on its cell-malforming effects.
View Article and Find Full Text PDFSecond generation bioethanol produced from lignocellulosic biomass is attracting attention as an alternative energy source. In this study, a detailed knowledge of the composition and structure of common cattail (Typha latifolia L.) cell wall polysaccharides, obtained from stem or leaves, has been conducted using a wide set of techniques to evaluate this species as a potential bioethanol feedstock.
View Article and Find Full Text PDFAs a consequence of the habituation to low levels of dichlobenil (DCB), cultured maize cells presented an altered hemicellulose cell fate with a lower proportion of strongly wall-bound hemicelluloses and an increase in soluble extracellular polymers released into the culture medium. The aim of this study was to investigate the relative molecular mass distributions of polysaccharides as well as phenolic metabolism in cells habituated to low levels of DCB (1.5 μM).
View Article and Find Full Text PDFThe habituation of bean cells to quinclorac did not rely on cell wall modifications, contrary to what it was previously observed for the well-known cellulose biosynthesis inhibitors dichlobenil or isoxaben. The aim of the present study was to investigate whether or not the bean cells habituation to quinclorac is related to an enhancement of antioxidant activities involved in the scavenging capacity of reactive oxygen species. Treating non-habituated bean calluses with 10 μM quinclorac reduced the relative growth rate and induced a two-fold increase in lipid peroxidation.
View Article and Find Full Text PDFJ Integr Plant Biol
April 2015
Maize (Zea mays L.) suspension-cultured cells with up to 70% less cellulose were obtained by stepwise habituation to dichlobenil (DCB), a cellulose biosynthesis inhibitor. Cellulose deficiency was accompanied by marked changes in cell wall matrix polysaccharides and phenolics as revealed by Fourier transform infrared (FTIR) spectroscopy.
View Article and Find Full Text PDFCell-suspension cultures (Zea mays L., Black Mexican sweet corn) habituated to 2,6-dichlorobenzonitrile (DCB) survive with reduced cellulose owing to hemicellulose network modification. We aimed to define the hemicellulose metabolism modifications in DCB-habituated maize cells showing a mild reduction in cellulose at different stages in the culture cycle.
View Article and Find Full Text PDFStudies involving the habituation of plant cell cultures to cellulose biosynthesis inhibitors have achieved significant progress as regards understanding the structural plasticity of cell walls. However, since habituation studies have typically used high concentrations of inhibitors and long-term habituation periods, information on initial changes associated with habituation has usually been lost. This study focuses on monitoring and characterizing the short-term habituation process of maize (Zea mays) cell suspensions to dichlobenil (DCB).
View Article and Find Full Text PDFGrapevine (Vitis vinifera L.) is one of the most economically important fruit crops in the world. Deficit in nitrogen, phosphorus and sulfur nutrition impairs essential metabolic pathways.
View Article and Find Full Text PDFBean cells habituated to grow in the presence of dichlobenil exhibited reduced cellulose and hemicellulose content and an increase in pectic polysaccharides. Furthermore, following the extraction of pectins and hemicelluloses, a large amount of neutral sugars was released. These sugars were found to be part of a soluble β-1,4-glucan in a preliminary characterization, as reported by Encina et al.
View Article and Find Full Text PDFInt J Mol Sci
August 2015
The variety of bioassays developed to evaluate different inhibition responses for cellulose biosynthesis inhibitors makes it difficult to compare the results obtained. This work aims (i) to test a single inhibitory assay for comparing active concentrations of a set of putative cellulose biosynthesis inhibitors and (ii) to characterize their effect on cell wall polysaccharides biosynthesis following a short-term exposure. For the first aim, dose-response curves for inhibition of dry-weight increase following a 30 days exposure of bean callus-cultured cells to these inhibitors were obtained.
View Article and Find Full Text PDFFourier Transform InfraRed (FTIR) spectroscopy is a powerful and rapid technique for analysing cell wall components and putative cross-links, which is able to non-destructively recognize polymers and functional groups and provide abundant information about their in muro organization. FTIR spectroscopy has been reported to be a useful tool for monitoring cell wall changes occurring in muro as a result of various factors, such as growth and development processes, mutations or biotic and abiotic stresses. This mini-review examines the use of FTIR spectroscopy in conjunction with multivariate analyses to monitor cell wall changes related to (1) the exposure of diverse plant materials to cellulose biosynthesis inhibitors (CBIs), and (2) the habituation/dehabituation of plant cell cultures to this kind of herbicides.
View Article and Find Full Text PDFCultured maize cells habituated to grow in the presence of the cellulose synthesis inhibitor dichlobenil (DCB) have a modified cell wall in which the amounts of cellulose are reduced and the amounts of arabinoxylan increased. This paper examines the contribution of cell wall-esterified hydroxycinnamates to the mechanism of DCB habituation. For this purpose, differences in the phenolic composition of DCB-habituated and non-habituated cell walls, throughout the cell culture cycle and the habituation process were characterized by HPLC.
View Article and Find Full Text PDFThe habituation of cell cultures to cellulose biosynthesis inhibitors constitutes a valuable method for learning more about the plasticity of plant cell wall composition and structure. The subculture of habituated cells in the absence of an inhibitor (dehabituation) offers complementary information: some habituation-associated modifications revert, whereas others remain, even after long-term (3-5 years) dehabituation processes. However, is dehabituation simply the opposite to the process of habituation, in the same way that the cloth woven by Penélope during the day was unwoven during the night? Principal Component Analysis applied to Fourier Transformed Infrared (FTIR) spectra of cell walls from dichlobenil-habituated and dehabituated bean cell lines has shown that dehabituation follows a different pathway to that of habituation.
View Article and Find Full Text PDFSuspension-cultured bean cells habituated to growth in a lethal concentration of dichlobenil were cultured for 3-5 years in a medium lacking the inhibitor in order to obtain long-term dehabituated cell lines. The growth parameters, cell morphology and ultrastructure of cells in the absence of dichlobenil reverted to that of non-habituated cells. The cellulose content and Fourier transform infrared (FTIR) spectra of crude cell walls from long-term dehabituated cells were also similar to those of non-habituated cells.
View Article and Find Full Text PDF