Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fourier Transform InfraRed (FTIR) spectroscopy is a powerful and rapid technique for analysing cell wall components and putative cross-links, which is able to non-destructively recognize polymers and functional groups and provide abundant information about their in muro organization. FTIR spectroscopy has been reported to be a useful tool for monitoring cell wall changes occurring in muro as a result of various factors, such as growth and development processes, mutations or biotic and abiotic stresses. This mini-review examines the use of FTIR spectroscopy in conjunction with multivariate analyses to monitor cell wall changes related to (1) the exposure of diverse plant materials to cellulose biosynthesis inhibitors (CBIs), and (2) the habituation/dehabituation of plant cell cultures to this kind of herbicides. The spectra analyses show differences not only regarding the inhibitor, but also regarding how long cells have been growing in its presence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260703PMC
http://dx.doi.org/10.4161/psb.6.8.15793DOI Listing

Publication Analysis

Top Keywords

ftir spectroscopy
16
cell wall
16
plant cell
8
cellulose biosynthesis
8
biosynthesis inhibitors
8
wall changes
8
cell
5
ftir
4
spectroscopy monitor
4
monitor modifications
4

Similar Publications

The interactions of three berberine mid-chain fatty acid salts ([BBR][C], n = 6, 7, 8) with lysozyme (Lyz) are investigated in detail using multi-spectroscopic and molecular docking techniques. Steady-state fluorescence and UV-visible absorption experiments suggest that the binding mechanism of [BBR][C] on Lyz is a static quenching with a binding ratio of 1:1. The compound [BBR][C] exhibits a moderate binding affinity toward Lyz.

View Article and Find Full Text PDF

Photofunctionalization of Light Alkanes by FeO/BCN at 12 °C.

J Am Chem Soc

September 2025

State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.

The activation of methane and other gaseous hydrocarbons at low temperature remains a substantial challenge for the chemistry community. Here, we report an anaerobic photosystem based on crystalline borocarbonitride (BCN) supported Fe-O nanoclusters, which can selectively functionalize C-H bonds of methane, ethane, and higher alkanes to value-added organic chemicals at 12 °C. Scanning transmission electron microscopy and X-ray absorption spectroscopy corroborated the ultrafine FeOOH and FeO species in Fe-O clusters, which enhanced the interfacial charge transfer/separation of BCN as well as the chemisorption of methane.

View Article and Find Full Text PDF

Objectives: Antibiotic resistance towards penicillin has been attempted to counter by chemically modifying ampicillin through the conjugation with silver nanoparticles (AgNPs). The current study optimizes the conditions for synthesizing and characterizing AgNP-ampicillin to quantify the conjugation extent, evaluate the antibacterial efficacy, and explore the underlying antibacterial mechanisms.

Materials And Methods: AgNPs were synthesized from silver nitrate by chemical reduction method, silica-coated with tetraethyl orthosilicate (TEOS) and amine functionalized by (3-aminopropyl) triethoxysilane (APTES), which was then conjugated with ampicillin via the carbodiimide chemistry.

View Article and Find Full Text PDF

Confronting the dual challenges of carbon neutrality and sustainable energy, photocatalytic CO reduction requires precise control over product selectivity. This study demonstrates that surface hydroxyl (-OH) density serves as a molecular switch for reaction pathways in graphene oxide/cobalt tetraphenylporphyrin (GO/CoTPP) hybrids. By tuning the reduction degree of GO supports via gradient hydrazine hydrate treatment (0-85%), we constructed catalysts with controlled -OH concentrations.

View Article and Find Full Text PDF

The iron nickel magnesium tetra-oxide (FeNiMgO) nanocomposites (NCs) first reported in this article were synthesized using the sol-gel method. For investigation using powder X-ray diffraction (PXRD), the presence of a cubic structure is confirmed. In Raman spectroscopy, the vibrational modes are investigated.

View Article and Find Full Text PDF