Publications by authors named "Pedro A Sanchez-Lara"

Objective: Natal teeth are teeth that are present at birth. Multiple natal teeth are extremely rare. The objective of this study was to find the molecular aetiology of a unique dental phenotype including natal teeth, tooth agenesis, and root maldevelopment in a 5-generation family.

View Article and Find Full Text PDF

Background: Decisions to split two or more phenotypic manifestations related to genetic variations within the same gene can be challenging, especially during the early stages of syndrome discovery. Genotype-based diagnostics with artificial intelligence (AI)-driven approaches using next-generation phenotyping (NGP) and DNA methylation (DNAm) can be utilized to expedite syndrome delineation within a single gene.

Methods: We utilized an expanded cohort of 56 patients (22 previously unpublished individuals) with truncating variants in the MN1 gene and attempted different methods to assess plausible strategies to objectively delineate phenotypic differences between the C-Terminal Truncation (CTT) and N-Terminal Truncation (NTT) groups.

View Article and Find Full Text PDF

Germline variants that disrupt components of the epigenetic machinery cause syndromic neurodevelopmental disorders. Using exome and genome sequencing, we identified variants in , a lysine demethylase crucial for embryonic development, in 18 individuals with developmental delays and/or intellectual disabilities. The severity ranged from learning disabilities to severe intellectual disability.

View Article and Find Full Text PDF

Background And Objectives: Spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) due to acid ceramidase deficiency is a rare disorder, allelic with Farber disease, resulting from recessive variants. Patients present in early childhood with muscle weakness due to anterior horn degeneration and/or progressive drug-resistant myoclonic epilepsy. Death usually results from respiratory complications or status epilepticus during adolescence.

View Article and Find Full Text PDF

Background: The 17q12 deletion syndrome (17q12DS) is a heterozygous deletion of a 1.4 megabase‒spanning DNA sequence on chromosome 17. The clinical characteristics of 17q12DS include neurodevelopmental disorders, kidney and urinary tract abnormalities.

View Article and Find Full Text PDF
Article Synopsis
  • - This study examines the link between rare variants in the cullin-3 ubiquitin ligase (CUL3) gene and neurodevelopmental disorders (NDDs), gathering data from multiple centers to explore genetic mutations and their clinical impacts.
  • - Researchers identified 37 individuals with CUL3 variants, most of which result in loss-of-function (LoF), leading to intellectual disabilities and possibly autistic traits; specific mechanisms affecting protein stability were also investigated.
  • - The findings enhance the understanding of NDDs associated with CUL3 mutations, suggesting that LoF variants are the main cause, which could help inform future diagnostics and treatment strategies.
View Article and Find Full Text PDF
Article Synopsis
  • A 10-year-old boy experienced progressive muscle weakness, atrophy, and weight loss, along with symptoms like tachycardia, tremor, and learning issues.
  • Electromyography showed chronic myopathic changes, and lab tests indicated undetectable thyroid stimulating hormone, high thyroid peroxidase antibodies, and thyroid stimulating immunoglobulins.
  • After treatment with atenolol and methimazole, the boy's strength and cognitive abilities improved, emphasizing the need to consider reversible causes for neurologic symptoms in children.
View Article and Find Full Text PDF

Purpose: variants in (Cullin-3 ubiquitin ligase) have been strongly associated with neurodevelopmental disorders (NDDs), but no large case series have been reported so far. Here we aimed to collect sporadic cases carrying rare variants in describe the genotype-phenotype correlation, and investigate the underlying pathogenic mechanism.

Methods: Genetic data and detailed clinical records were collected via multi-center collaboration.

View Article and Find Full Text PDF

The short pre-M1 helix within the S1-M1 linker (also referred to as the pre-M1 linker) between the agonist-binding domain (ABD, S1) and the M1 transmembrane helix of the NMDA receptor (NMDAR) is devoid of missense variants within the healthy population but is a locus for de novo pathogenic variants associated with neurological disorders. Several de novo variants within this helix have been identified in patients presenting early in life with intellectual disability, developmental delay, and/or epilepsy. In this study, we evaluated functional properties for twenty variants within the pre-M1 linker in GRIN1, GRIN2A, and GRIN2B genes, including six novel missense variants.

View Article and Find Full Text PDF

Supravalvar aortic stenosis (SVAS) is a less common but clinically important form of left ventricular outflow tract obstruction, and commonly associated with Williams syndrome (WS). SVAS outside of WS may also occur sporadically or in a familial form, often with identifiable mutations in the elastin (ELN) gene. While risk of sudden cardiac death in patients with SVAS has been extensively described in the context of WS, less is known about risk in patients with isolated SVAS.

View Article and Find Full Text PDF

ADP-ribosylation factor 1 (ARF1) is a small GTPase that regulates membrane traffic at the Golgi apparatus and endosomes through recruitment of several coat proteins and lipid-modifying enzymes. Here, we report a pediatric patient with an ARF1-related disorder because of a monoallelic de novo missense variant (c.296 G > A; p.

View Article and Find Full Text PDF

Objective: The objectives of this study were to define the clinical and biochemical spectrum of spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) and to determine if aberrant cellular ceramide accumulation could be normalized by enzyme replacement.

Methods: Clinical features of 6 patients with SMA-PME were assessed by retrospective chart review, and a literature review of 24 previously published cases was performed. Leukocyte enzyme activity of acid ceramidase was assessed with a fluorescence-based assay.

View Article and Find Full Text PDF

Au-Kline syndrome (AKS) is a neurodevelopmental disorder associated with multiple malformations and a characteristic facial gestalt. The first individuals ascertained carried de novo loss-of-function (LoF) variants in HNRNPK. Here, we report 32 individuals with AKS (26 previously unpublished), including 13 with de novo missense variants.

View Article and Find Full Text PDF

Research has shown that genetics play a key role in the development of autism spectrum disorder (ASD). ASD has been linked to many genes and is a prominent feature in numerous genetic disorders. A genetic evaluation should be offered to any patient who receives a diagnosis of ASD, including deep phenotyping and genetic testing when clinically indicated.

View Article and Find Full Text PDF

Our previous work demonstrating enrichment of outflow tract (OFT) congenital heart disease (CHD) in children with cleft lip and/or palate (CL/P) suggests derangements in common underlying developmental pathways. The current pilot study examines the underlying genetics of concomitant nonsyndromic CL/P and OFT CHD phenotype. Of 575 patients who underwent CL/P surgery at Children's Hospital Los Angeles, seven with OFT CHD, negative chromosomal microarray analysis, and no recognizable syndromic association were recruited with their parents (as available).

View Article and Find Full Text PDF

Hyperinsulinemic hypoglycemia is a condition linked to several genetic, metabolic, and growth disorders in which there is dysregulated insulin secretion. In infants, an inappropriately persistent hypoglycemic and hypoketotic state can cause severe brain injury leading to epilepsy, cerebral palsy, and neurodevelopmental disabilities due to the lack of glucose and ketone substrate to serve as fuel for the developing brain. The most common cause of persistent hypoglycemia in neonates and children has been found to be congenital hyperinsulinism.

View Article and Find Full Text PDF

Trisomy 21 is a common congenital disorder with well-documented clinical manifestations, including an increased risk for the transient myeloproliferative disorder as a neonate and leukemia in childhood and adolescence. Transient myeloproliferative disorder is only known to occur in hematopoietic cells with trisomy 21. Children with mosaic trisomy 21 also have a risk for hematological malignancies.

View Article and Find Full Text PDF

Background: Prader-Willi syndrome (PWS) is an imprinting disorder caused by the absence of paternal expressed genes in the Prader-Willi critical region (PWCR) on chromosome 15q11.2-q13. Three molecular mechanisms have been known to cause PWS, including a deletion in the PWCR, uniparental disomy 15 and imprinting defects.

View Article and Find Full Text PDF

Cyclin D2 (CCND2) is a critical cell cycle regulator and key member of the cyclin D2-CDK4 (DC) complex. De novo variants of CCND2 clustering in the distal part of the protein have been identified as pathogenic causes of brain overgrowth (megalencephaly, MEG) and severe cortical malformations in children including the megalencephaly-polymicrogyria-polydactyly-hydrocephalus (MPPH) syndrome. Megalencephaly-associated CCND2 variants are localized to the terminal exon and result in accumulation of degradation-resistant protein.

View Article and Find Full Text PDF

Background: The majority of research to understand the risk factors of nonsyndromic orofacial clefts (NSOFCs) has been conducted in high-income populations. Although patients with NSOFCs in low- and middle-income countries (LMICs) are at the highest risk of not receiving care, global health infrastructure allows innovative partnerships to explore the etiologic mechanisms of cleft and targets for prevention unique to these populations.

Methods: The International Family Study (IFS) is an ongoing case-control study with supplemental parental trio data designed to examine genetic, environmental, lifestyle, and sociodemographic risk factors for NSOFCs in 8 LMICs (through August 2020).

View Article and Find Full Text PDF