Liquid scanning electron microscopy (wet SEM) is an important tool that allows for high-resolution imaging of materials in their native liquid environments. Its application, however, to small organics and biologics that are often used in therapeutic suspensions has been hindered by challenges such as poor sample adhesion to the imaging window, high sensitivity toward radiation damage, and low contrast due to a low number. This work demonstrates strategies to overcome these limitations using a vacuum-compatible liquid cell, thereby expanding wet SEM's capabilities for in situ characterization of various therapeutic suspensions.
View Article and Find Full Text PDFBackground: We investigated the relationship of piriform cortex (PC) structural network centrality with drug resistance and epilepsy duration as markers of sustained epileptic activity.
Methods: PCs were manually delineated on retrospectively collected 3D-T1-MRI images of patients with temporal lobe epilepsy (TLE). Connectomes were computed from diffusion MRI scans, including the PC as network nodes.
Subcutaneous (SC) administration is a desired route for monoclonal antibodies (mAbs). However, formulating mAbs for small injection volumes at high concentrations with suitable stability and injectability is a significant challenge. Here, this work presents a platform technology that combines the stability of crystalline antibodies with injectability and tunability of soft hydrogel particles.
View Article and Find Full Text PDFDeveloping biological formulations to maintain the chemical and structural integrity of therapeutic antibodies remains a significant challenge. Monoclonal antibody (mAb) crystalline suspension formulation is a promising alternative for high concentration subcutaneous drug delivery. It demonstrates many merits compared to the solution formulation to reach a high concentration at the reduced viscosity and enhanced stability.
View Article and Find Full Text PDFBioorg Med Chem Lett
August 2020
The synthesis and structure activity relationship development of a pyrimidine series of heterocyclic Factor IXa inhibitors is described. Increased selectivity over Factor Xa inhibition was achieved through SAR expansion of the P1 element. Select compounds were evaluated in vivo to assess their plasma levels in rat.
View Article and Find Full Text PDFCrystallization processes have been widely used in the pharmaceutical industry for the manufacture, storage, and delivery of small-molecule and small protein therapeutics. However, the identification of crystallization processes for biologics, particularly monoclonal antibodies, has been prohibitive due to the size and the flexibility of their overall structure. There remains a challenge and an opportunity to utilize the benefits of crystallization of biologics.
View Article and Find Full Text PDFBioorg Med Chem Lett
June 2017
Using structure based drug design, novel aminobenzisoxazoles as coagulation factor IXa inhibitors were designed and synthesized. Highly selective inhibition of FIXa over FXa was demonstrated. Anticoagulation profile of selected compounds was evaluated by aPTT and PT tests.
View Article and Find Full Text PDFA new subseries of substituted piperidines as p53-HDM2 inhibitors exemplified by 21 has been developed from the initial lead 1. Research focused on optimization of a crucial HDM2 Trp23-ligand interaction led to the identification of 2-(trifluoromethyl)thiophene as the preferred moiety. Further investigation of the Leu26 pocket resulted in potent, novel substituted piperidine inhibitors of the HDM2-p53 interaction that demonstrated tumor regression in several human cancer xenograft models in mice.
View Article and Find Full Text PDFNat Struct Mol Biol
December 2015
Immunoglobulin G4 antibodies exhibit unusual properties with important biological consequences. We report the structure of the human full-length IgG4 S228P anti-PD1 antibody pembrolizumab, solved to 2.3-Å resolution.
View Article and Find Full Text PDFBioorg Med Chem Lett
November 2015
Using structure based drug design, a novel class of potent coagulation factor IXa (FIXa) inhibitors was designed and synthesized. High selectivity over FXa inhibition was achieved. Selected compounds were evaluated in rat IV/PO pharmacokinetic (PK) studies and demonstrated desirable oral PK profiles.
View Article and Find Full Text PDFBioorg Med Chem Lett
November 2015
Using structure based drug design (SBDD), a novel class of potent coagulation Factor IXa (FIXa) inhibitors was designed and synthesized. High selectivity over FXa inhibition was achieved. Selected compounds demonstrated oral bioavailability in rat IV/PO pharmacokinetic (PK) studies.
View Article and Find Full Text PDFTwo high-throughput screening hits were investigated for SAR against human factor IXa. Both hits feature a benzamide linked to a [6-5]-heteroaryl via an alkyl amine. In the case where this system is a benzimidazolyl-ethyl amine the binding potency for the hit was improved >500-fold, from 9 μM to 0.
View Article and Find Full Text PDFThe symptoms of Clostridium difficile infections are caused by two exotoxins, TcdA and TcdB, which target host colonocytes by binding to unknown cell surface receptors, at least in part via their combined repetitive oligopeptide (CROP) domains. A combination of the anti-TcdA antibody actoxumab and the anti-TcdB antibody bezlotoxumab is currently under development for the prevention of recurrent C. difficile infections.
View Article and Find Full Text PDFInterleukin-23 (IL-23) is a heterodimeric cytokine, a central factor in chronic/autoimmune inflammation. It signals through a heterodimeric receptor consisting of IL-23r, which is heavily glycosylated. The structural characterization of IL-23r has not been reported.
View Article and Find Full Text PDFMEK1 is a member of the MAPK signal transduction pathway that responds to growth factors and cytokines. We have determined that the kinase domain spans residues 35-382 by proteolytic cleavage. The complete kinase domain has been crystallized and its X-ray crystal structure as a complex with magnesium and ATP-gammaS determined at 2.
View Article and Find Full Text PDFInterleukin (IL)-23 is a pro-inflammatory cytokine playing a key role in the pathogenesis of several autoimmune and inflammatory diseases. We have determined the crystal structures of the heterodimeric p19-p40 IL-23 and its complex with the Fab (antigen-binding fragment) of a neutralizing antibody at 2.9 and 1.
View Article and Find Full Text PDFBiochim Biophys Acta
May 2004
Human beta-amyloid precursor protein cleaving enzyme (beta-secretase, or BACE) belongs to the aspartyl protease family, and is responsible for generating the N-terminus of beta-amyloid peptide (Abeta). BACE is a type I transmembrane glycoprotein with pre-, pro- and catalytic domains, a short transmembrane helix and a cytoplasmic region. In this study, a truncated form was engineered to produce the authentic catalytic domain of BACE in Trichoplusia ni (High 5) cells.
View Article and Find Full Text PDFAdam33 is a putative asthma susceptibility gene encoding for a membrane-anchored metalloprotease belonging to the ADAM family. The ADAMs (a disintegrin and metalloprotease) are a family of glycoproteins implicated in cell-cell interactions, cell fusion, and cell signaling. We have determined the crystal structure of the Adam33 catalytic domain in complex with the inhibitor marimastat and the inhibitor-free form.
View Article and Find Full Text PDF