Publications by authors named "Nikkita Khattar"

Positron emission tomography (PET)-based connectivity analysis provides a molecular perspective that complements fMRI-derived functional connectivity. However, lack of standardized terminology and diverse methodologies in PET connectivity studies has resulted in inconsistencies, complicating the interpretation and comparison of results across studies. A standardized nomenclature is thus needed to reduce ambiguity, enhance reproducibility, and facilitate interpretability across radiotracers, imaging modalities and studies.

View Article and Find Full Text PDF

The collaboration of Yale, the University of California, Davis, and United Imaging Healthcare has successfully developed the NeuroEXPLORER, a dedicated human brain PET imager with high spatial resolution, high sensitivity, and a built-in 3-dimensional camera for markerless continuous motion tracking. It has high depth-of-interaction and time-of-flight resolutions, along with a 52.4-cm transverse field of view (FOV) and an extended axial FOV (49.

View Article and Find Full Text PDF

Purpose: Aging is a major societal concern due to age-related functional losses. Synapses are crucial components of neural circuits, and synaptic density could be a sensitive biomarker to evaluate brain function. [C]UCB-J is a positron emission tomography (PET) ligand targeting synaptic vesicle glycoprotein 2A (SV2A), which can be used to evaluate brain synaptic density in vivo.

View Article and Find Full Text PDF

Changes in myelination are a cardinal feature of brain development and the pathophysiology of several central nervous system diseases, including multiple sclerosis and dementias. Advanced magnetic resonance imaging (MRI) methods have been developed to probe myelin content through the measurement of myelin water fraction (MWF). However, the prolonged data acquisition and post-processing times of current MWF mapping methods pose substantial hurdles to their clinical implementation.

View Article and Find Full Text PDF

Mounting evidence indicates that myelin breakdown may represent an early phenomenon in neurodegeneration, including Alzheimer's disease (AD). Understanding the factors influencing myelin synthesis and breakdown will be essential for the development and evaluation of therapeutic interventions. In this work, we assessed associations between genetic variance in apolipoprotein E (APOE) and cerebral myelin content.

View Article and Find Full Text PDF

The choroid plexus (CP) is an important cerebral structure involved in cerebrospinal fluid production and transport of solutes into the brain. Recent studies have uncovered the involvement of the CP in neurological disorders such as Alzheimer's disease and multiple sclerosis. However, our understanding of human age-related microstructural and functional changes in the CP with aging and neuropathology is limited.

View Article and Find Full Text PDF

Myelin loss and iron accumulation are cardinal features of aging and various neurodegenerative diseases. Oligodendrocytes incorporate iron as a metabolic substrate for myelin synthesis and maintenance. An emerging hypothesis in Alzheimer's disease research suggests that myelin breakdown releases substantial stores of iron that may accumulate, leading to further myelin breakdown and neurodegeneration.

View Article and Find Full Text PDF

Brainstem tissue microstructural properties change across the adult lifespan. However, studies elucidating the biological processes that govern brainstem maturation and degeneration are lacking. In the present work, conducted on a large cohort of 140 cognitively unimpaired subjects spanning a wide age range of 21 to 94 years, we implemented a multi-parameter approach to characterize the sex- and age differences.

View Article and Find Full Text PDF

Background: Myelin loss and cerebral blood flow (CBF) decline are central features of several neurodegenerative diseases. Myelin maintenance through oligodendrocyte metabolism is an energy-demanding process, so that myelin homeostasis is particularly sensitive to hypoxia, hypoperfusion or ischaemia. However, in spite of its central importance, little is known about the association between blood supply and myelin integrity.

View Article and Find Full Text PDF

Adequate cerebral blood flow (CBF) is essential to a healthy central nervous system (CNS). Previous work suggests that CBF differs between men and women, and declines with age and certain pathologies, but a highly controlled systematic study across a wide age range, and incorporating white matter (WM) regions, has not been undertaken. Here, we investigate age- and sex-related differences in CBF in gray matter (GM) and WM regions in a cohort ( = 80) of cognitively unimpaired individuals over a wide age range.

View Article and Find Full Text PDF

The g-ratio, defined as the inner-to-outer diameter of a myelinated axon, is associated with the speed of nerve impulse conduction, and represents an index of axonal myelination and integrity. It has been shown to be a sensitive and specific biomarker of neurodevelopment and neurodegeneration. However, there have been very few magnetic resonance imaging studies of the g-ratio in the context of normative aging; characterizing regional and time-dependent cerebral changes in g-ratio in cognitively normal subjects will be a crucial step in differentiating normal from abnormal microstructural alterations.

View Article and Find Full Text PDF

Background: Myelin loss is a central feature of several neurodegenerative diseases, including Alzheimer's disease (AD). In animal studies, a link has been established between obesity and impairment of oligodendrocyte maturation, the cells that produce and maintain myelin. Although clinical magnetic resonance imaging (MRI) studies have revealed microstructural alterations of cerebral white matter tissue in subjects with obesity, no specific myelin vs.

View Article and Find Full Text PDF

Most magnetic resonance imaging (MRI) studies investigating the relationship between regional brain myelination or axonal density and aging have relied upon nonspecific methods to probe myelin and axonal content, including diffusion tensor imaging and relaxation time mapping. While these studies have provided pivotal insights into changes in cerebral architecture with aging and pathology, details of the underlying microstructural alterations have not been fully elucidated. In the current study, we used the BMC-mcDESPOT analysis, a direct and specific multicomponent relaxometry method for imaging of myelin water fraction (MWF), a marker of myelin content, and NODDI, an emerging multicomponent diffusion technique, for neurite density index (NDI) imaging, a proxy of axonal density.

View Article and Find Full Text PDF

The relationship between regional brain myelination and aging has been the subject of intense study, with magnetic resonance imaging perhaps the most effective modality for elucidating this. However, most of these studies have used nonspecific methods to probe myelin content, including diffusion tensor imaging, magnetization transfer ratio, and relaxation times. In the present study, we used the BMC-mcDESPOT analysis, a direct and specific method for imaging of myelin water fraction (MWF), a surrogate of myelin content.

View Article and Find Full Text PDF

Changes in longitudinal relaxation time (T) and proton density (PD) are sensitive indicators of microstructural alterations associated with various central nervous system diseases as well as brain maturation and aging. In this work, we introduce a new approach for rapid and accurate high-resolution (HR) or ultra HR (UHR) mapping of T and apparent PD (APD) of the brain with correction of radiofrequency field, B, inhomogeneities. The four-angle method (FAM) uses four spoiled-gradient recalled-echo (SPGR) images acquired at different flip angles (FA) and short repetition times (TRs).

View Article and Find Full Text PDF

Previous in-vivo magnetic resonance imaging (MRI)-based studies of age-related differences in the human brainstem have focused on volumetric morphometry. These investigations have provided pivotal insights into regional brainstem atrophy but have not addressed microstructural age differences. However, growing evidence indicates the sensitivity of quantitative MRI to microstructural tissue changes in the brain.

View Article and Find Full Text PDF

Single cell mass spectrometry (MS) is uniquely positioned for the sequencing and identification of peptides in rare cells. Small peptides can take on different roles in subcellular compartments. Whereas some peptides serve as neurotransmitters in the cytoplasm, they can also function as transcription factors in the nucleus.

View Article and Find Full Text PDF