Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Positron emission tomography (PET)-based connectivity analysis provides a molecular perspective that complements fMRI-derived functional connectivity. However, lack of standardized terminology and diverse methodologies in PET connectivity studies has resulted in inconsistencies, complicating the interpretation and comparison of results across studies. A standardized nomenclature is thus needed to reduce ambiguity, enhance reproducibility, and facilitate interpretability across radiotracers, imaging modalities and studies. Here, we define and differentiate the terms "molecular connectivity" and "molecular covariance". Drawing parallels from other imaging modalities, we propose "molecular connectivity" as an umbrella term to characterize statistical dependencies between the measured PET signal across brain regions at a within-subject level. Like fMRI resting-state functional connectivity, "molecular connectivity" leverages spatio-temporal associations in the PET signal to derive brain network associations. Conversely, "molecular covariance" denotes group-level computations of covariance matrices between-subjects. Further specification of the terminology can be achieved by including the target of the employed radioligand, such as "metabolic connectivity/covariance" for [F]FDG or "amyloid covariance" for [F]flutemetamol and "tau covariance" for [F]flortaucipir. While this approach to standardization aims to clarify terminology, open questions remain about the neurobiological underpinnings of these connectivity metrics. Future research should focus on elucidating these mechanisms and developing advanced computational methodologies that evaluate diverse feature relationships and improve the robustness of PET-based connectivity metrics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00259-025-07357-1 | DOI Listing |