IEEE J Biomed Health Inform
July 2025
The integration of artificial intelligence (AI) into medical image analysis has transformed healthcare, offering unprecedented precision in diagnosis, treatment planning, and disease monitoring. However, its adoption within the Internet of Medical Things (IoMT) raises significant challenges related to transparency, trustworthiness, and security. This paper introduces a novel Explainable AI (XAI) framework tailored for Medical Cyber-Physical Systems (MCPS), addressing these challenges by combining deep neural networks with symbolic knowledge reasoning to deliver clinically interpretable insights.
View Article and Find Full Text PDFAccurate channel estimation is crucial for reliable communication in orthogonal frequency division multiplexing (OFDM) systems, especially in high-mobility scenarios. Traditional channel estimation techniques, such as least squares (LS) and linear minimum mean square error (LMMSE), face limitations in terms of estimation accuracy and computational complexity. To address these challenges, this paper proposes a novel convolutional neural network (CNN)-based channel estimation framework utilizing residual learning and iterative refinement.
View Article and Find Full Text PDFIn the realm of intelligent healthcare, there is a growing ambition to reshape medical services through the integration of artificial intelligence (AI). However, conventional machine learning faces inherent challenges such as privacy issues, delayed updates, and protracted training times, particularly due to the hesitance of medical institutions to directly share sensitive data, with possible noises. In response to these concerns, a Quantum-Assisted Federated Intelligent Diagnosis Algorithm ( -QuAFIDA) is proposed, applied into real medical data.
View Article and Find Full Text PDFSensors (Basel)
December 2022
A collaborative painting robot that can be used as an alternative to workers has been developed using a digital twin framework and its performance was demonstrated experimentally. The digital twin of the automatic painting robot simulates the entire process and estimates the paint result before the real execution. An operator can view the simulated process and result with an option to either confirm or cancel the task.
View Article and Find Full Text PDFFollowing the recent advances in wireless communication leading to increased Internet of Things (IoT) systems, many security threats are currently ravaging IoT systems, causing harm to information. Considering the vast application areas of IoT systems, ensuring that cyberattacks are holistically detected to avoid harm is paramount. Machine learning (ML) algorithms have demonstrated high capacity in helping to mitigate attacks on IoT devices and other edge systems with reasonable accuracy.
View Article and Find Full Text PDFAutonomous vehicles are regarded as future transport mechanisms that drive the vehicles without the need of drivers. The photonic-based radar technology is a promising candidate for delivering attractive applications to autonomous vehicles such as self-parking assistance, navigation, recognition of traffic environment, etc. Alternatively, microwave radars are not able to meet the demand of next-generation autonomous vehicles due to its limited bandwidth availability.
View Article and Find Full Text PDFJ Signal Process Syst
November 2021
The SARS-CoV-2 virus causes a respiratory disease in humans, known as COVID-19. The confirmatory diagnostic of this disease occurs through the real-time reverse transcription and polymerase chain reaction test (RT-qPCR). However, the period of obtaining the results limits the application of the mass test.
View Article and Find Full Text PDFA quality monitoring system for telecommunication services is relevant for network operators because it can help to improve users' quality-of-experience (QoE). In this context, this article proposes a quality monitoring system, named Q-Meter, whose main objective is to improve subscriber complaint detection about telecommunication services using online-social-networks (OSNs). The complaint is detected by sentiment analysis performed by a deep learning algorithm, and the subscriber's geographical location is extracted to evaluate the signal strength.
View Article and Find Full Text PDF