98%
921
2 minutes
20
A collaborative painting robot that can be used as an alternative to workers has been developed using a digital twin framework and its performance was demonstrated experimentally. The digital twin of the automatic painting robot simulates the entire process and estimates the paint result before the real execution. An operator can view the simulated process and result with an option to either confirm or cancel the task. If the task is accepted, the digital twin generates all the parameters, including the end effector trajectory of the robot, the material flow to the collaborative robot, and a spray mechanism. This ability means that the painting process can be practiced in a virtual environment to decrease set costs, waste, and time, all of which are highly demanded in single-item production. In this study, the screen was fixtureless and, thus, a camera was used to capture it in a physical environment, which was further analyzed to determine its pose. The digital twin then builds the screen in real-time in a virtual environment. The communication between the physical and digital twins is bidirectional in this scenario. An operator can design a painting pattern, such as a basic shape and/or letter, along with its size and paint location, in the resulting procedure. The digital twin then generates the simulation and expected painting result using the physical twin's screen pose. The painting results show that the root mean square error (RMSE) of the painting is less than 1.5 mm and the standard deviation of RMSE is less than 0.85 mm. Additionally, the initial benefits of the technique include lower setup costs, waste, and time, as well as an easy-to-use operating procedure. More benefits are expected from the digital twin framework, such as the ability of the digital twin to (1) find a solution when a fault arises, (2) refine the control or optimize the operation, and (3) plan using historic data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824032 | PMC |
http://dx.doi.org/10.3390/s23010017 | DOI Listing |
Comput Struct Biotechnol J
August 2025
Institut de Recherche en Cancérologie de Montpellier (IRCM), Équipe Labellisée Ligue Contre le Cancer, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.
Digital twins (DTs) are emerging tools for simulating and optimizing therapeutic protocols in personalized nuclear medicine. In this paper, we present a modular pipeline for constructing patient-specific DTs aimed at assessing and improving dosimetry protocols in PRRT such as therapy. The pipeline integrates three components: (i) an anatomical DT, generated by registering patient CT scans with an anthropomorphic model; (ii) a functional DT, based on a physiologically-based pharmacokinetic (PBPK) model created in SimBiology; and (iii) a virtual clinical trial module using GATE to simulate particle transport, image simulation, and absorbed dose distribution.
View Article and Find Full Text PDFACS Nano
September 2025
Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315200, P. R. China.
Ni-Fe (oxy)hydroxides are among the most active oxygen evolution reaction (OER) catalysts in alkaline media. However, achieving precise control over local asymmetric Fe-O-Ni active sites in Ni-Fe oxyhydroxides for key oxygenated intermediates' adsorption steric configuration regulation of the OER is still challenging. Herein, we report a two-step dealloying strategy to fabricate asymmetric Fe-O-Ni pair sites in the shell of NiOOH@FeOOH/NiOOH heterostructures from NiFe Prussian blue analogue (PBA) nanocubes, involving anion exchange and structure reconstruction.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
September 2025
Department of Life Science (Food Science and Technology Division), GITAM University, Visakhapatnam, Andhra Pradesh, India.
Drying is a critical unit operation in food processing, essential for extending shelf life, ensuring microbial safety, and preserving the nutritional and sensory attributes of food products. However, conventional convective drying techniques are often energy-intensive and lead to undesirable changes such as texture degradation, loss of bioactive compounds, and reduced product quality, thereby raising concerns regarding their sustainability and efficiency. In response, recent advancements have focused on the development of innovative drying technologies that offer energy-efficient, rapid, and quality-preserving alternatives.
View Article and Find Full Text PDFInt J Surg
September 2025
First Clinical Medical College of Gannan Medical University, Ganzhou, Jiangxi, China.
Front Digit Health
August 2025
FEN - Graduate School in Engineering, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil.
Background: This paper presents the application of simulation to assess the functionality of a proposed Digital Twin (DT) architecture for immunisation services in primary healthcare centres. The solution is based on Industry 4.0 concepts and technologies, such as IoT, machine learning, and cloud computing, and adheres to the ISO 23247 standard.
View Article and Find Full Text PDF