Background: Patients discharged after acute brain injuries require ongoing medical care to support recovery and treat secondary neurologic complications. Most therapeutic trials for interventions after acute brain injuries use measures of disability (i.e.
View Article and Find Full Text PDFPoor wear- and corrosion-resistance of 316L SS implants are critical problems in orthopedic implants. This study aims to improve the wear- and corrosion-resistance of 316L SS through surface coating. In this study, a bilayer composite coating consisting of polyether ether ketone (PEEK) as the first layer, and titania (TiO)- and Cu-doped mesoporous bioactive glass nanoparticles (Cu-MBGNs) were deposited as the second layer on a 316L SS electrophoretic deposition (EPD).
View Article and Find Full Text PDFDarunavir, a frontline treatment for HIV infection, faces limitations due to emerging multidrug resistant (MDR) HIV strains, necessitating the development of analogs with improved activity. In this study, a combinatorial in silico approach was used to initially design a series of HIV-1 PI analogs with modifications at key sites, P1' and P2', to enhance interactions with HIV-1 PR. Fifteen analogs with promising binding scores were selected for synthesis and evaluated for the HIV-1 PR inhibition activity.
View Article and Find Full Text PDF3D extrusion printing has been widely investigated for low-volume production of complex-shaped scaffolds for tissue regeneration. Gelatin methacryloyl (GelMA) is used as a baseline material for the synthesis of biomaterial inks, often with organic/inorganic fillers, to obtain a balance between good printability and biophysical properties. The present study demonstrates how 45S5 bioactive glass (BG) addition and GelMA concentrations can be tailored to develop GelMA composite scaffolds with good printability and buildability.
View Article and Find Full Text PDFIn the present study, we prepared magnetite nanoparticles (MNPs) loaded with natural () herb and Epilim (Ep) drug to evaluate the anti-cancerous activity against brain cancer cells. All the samples were prepared via co-precipitation approach modified with different concentrations of and Ep drug at room temperature. The MNPs loaded with drug and natural herb were studied in terms of crystal structure, morphology, colloidal stability, size distribution, and magnetic properties.
View Article and Find Full Text PDFPatient-specific fabrication of scaffold/implant requires an engineering approach to manufacture the ideal scaffold. Herein, we design and 3D print scaffolds comprised of polyether-ether-ketone (PEEK) and sodium-carboxymethyl cellulose (Na-CMC). The fabricated scaffold was dip coated with Zn and Mn doped bioactive glass nanoparticles (Zn-Mn MBGNs).
View Article and Find Full Text PDFThe present work focuses on developing 5% w/v oxidized alginate (alginate di aldehyde, ADA)-7.5% w/v gelatin (GEL) hydrogels incorporating 0.25% w/v silk fibroin (SF) and loaded with 0.
View Article and Find Full Text PDFGlobally, there is an increase in a number of bone disorders including osteoarthritis (OA), osteomyelitis, bone cancer, and etc., which has led to a demand for bone tissue regeneration. In order to take use of the osteogenic potential of natural herbs, mesoporous bioactive glass nanoparticles (MBGNs) have the ability to deliver therapeutically active chemicals locally.
View Article and Find Full Text PDFPetroleum-based plastics are used as packaging materials because of their low cost and high availability; however, continuous use of these nondegradable materials especially in the food industry has led to environmental pollution. The present study aimed to synthesize antibacterial and biodegradable films based on natural biopolymers carboxymethyl cellulose (CMC), poly(vinyl alcohol) (PVA), and ascorbic acid (AA) cross-linked in the presence of glutaraldehyde (GA). The films were synthesized in two different concentrations, 60PVA:40CMC:AA and 70PVA:30CMC:AA with a fixed amount of AA.
View Article and Find Full Text PDFThe most important challenge faced in designing orthopedic devices is to control the leaching of ions from the substrate material, and to prevent biofilm formation. Accordingly, the surgical grade stainless steel (316L SS) was electrophoretically deposited with functional composition of biopolymers and bioceramics. The composite coating consisted of: Bioglass (BG), hydroxyapatite (HA), and lawsone, that were loaded into a polymeric matrix of Xanthan Dialdehyde/Chondroitin Sulfate (XDA/CS).
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2023
Electrophoretic deposition (EPD) of polyether ether ketone (PEEK) coatings on metallic implants has recently attracted a great deal of interest; however, further investigation into their corrosion, surface, and tribological properties is required for their clinical application. Using Potentiodynamic polarization and Mott-Schottky analysis of PEEK coatings, we analyzed the electrochemical corrosion behavior of electrophoretically deposited PEEK coatings on 316L stainless steel (SS) substrates. In addition, the tribological behavior of the coatings was determined through pin-on-disc and scratch testing.
View Article and Find Full Text PDFIn this study, soy protein isolate (SPI)-chitosan (CS) adducts were prepared by using dynamic microfluidic-assisted transglutaminase (TGase) modification. It was shown that the solubility and degree of binding of SPI-CS adducts prepared by dynamic microfluidic-assisted TGase modification were better. After the samples were treated twice at 400 bar, the degree of binding for SPI-CS adducts increased to 31.
View Article and Find Full Text PDFThere is an urgent need to develop biodegradable implants that can degrade once they have fulfilled their function. Commercially pure magnesium (Mg) and its alloys have the potential to surpass traditional orthopedic implants due to their good biocompatibility and mechanical properties, and most critically, biodegradability. The present work focuses on the synthesis and characterization (microstructural, antibacterial, surface, and biological properties) of poly(lactic--glycolic) acid (PLGA)/henna ()/Cu-doped mesoporous bioactive glass nanoparticles (Cu-MBGNs) composite coatings deposited via electrophoretic deposition (EPD) on Mg substrates.
View Article and Find Full Text PDFAim: The efficacy of antifibrinolytics in subarachnoid hemorrhage remains unclear due to conflicting evidence from studies.
Materials & Methods: Online databases were queried to include randomized controlled trials and propensity matched observational studies. We used Review Manager for the statistical analysis, presenting results as odds ratios with 95% CI.
Natural materials are gaining interest as coating feedstock because their "quality to cost" ratio is better and they are more environmentally friendly than most of the synthetic ceramics. They give sufficient protection to metal surfaces against harsh conditions such as corrosion, wear, and high temperature. In the current study, chromite mineral was beneficiated and reduced to two different sizes to be used as feedstock material for thermal spray coating.
View Article and Find Full Text PDFSmart structures can help to resolve many issues related to conventional materials that are being used in different industries. Shape memory alloys (SMAs) are smart materials with better actuation response, vibration damping characteristics, and large strain recovery, making them good candidates due to their high strength and corrosion resistance for various engineering applications. The performance of fiber-reinforced polymer (FRP) composite materials that are replacing many conventional materials due to their good strength, stiffness, and lightweight potential especially in fuel-consuming industries such as aerospace and automotive, can further be improved by impregnation with SMAs.
View Article and Find Full Text PDFJ Coll Physicians Surg Pak
August 2022
Cutaneous T-cell lymphoma (CTCL) is a rare group of extra-nodal non-Hodgkin's lymphomas resulting in infiltration of the skin by the malignant cells. Sézary syndrome (SS) and mycosis fungoides (MF) are the most common subtypes, and infectious complications are the major cause of death in such patients. The presence of implantable cardiac devices (ICD) and CTCL make the patient more vulnerable to the device-related infective endocarditis (IE) caused by methicillin-resistant staphylococcus aureus (MRSA).
View Article and Find Full Text PDFFor the first time, the present review critically evaluates biodegradable polymer matrix composites containing graphene-related materials (GRMs) for antibacterial applications while discussing their development, processing routes, mechanical properties, and antibacterial activity. Due to its suitable biological properties and processability, chitosan has been the most widely used biodegradable polymer for the fabrication of GRM-containing composites with antibacterial properties. The majority of biodegradable polymers (including cellulose-, gelatine-, PVA-, PCL-, and PHA-based polymers) exhibit little to no antibacterial effect alone; however, they show significant antibacterial activity (>70%) when combined with GRMs.
View Article and Find Full Text PDFIn recent years, natural polymers have replaced synthetic polymers for antibacterial orthopedic applications owing to their excellent biocompatibility and biodegradability. Zein is a biopolymer found in corn. The lacking mechanical stability of zein is overcome by incorporating bioceramics, e.
View Article and Find Full Text PDFBiomedical implants are the need of this era due to the increase in number of accidents and follow-up surgeries. Different types of bone diseases such as osteoarthritis, osteomalacia, bone cancer, etc., are increasing globally.
View Article and Find Full Text PDFIn this study, silver-strontium-doped hydroxyapatite (AgSr-HA)/chitosan composite coatings were deposited on a 316L stainless steel (SS) substrate via electrophoretic deposition (EPD). The Taguchi design of experiment (DoE) approach was used to optimize the EPD parameters such as the applied voltage, interelectrode spacing, and deposition time. Furthermore, the concentration of AgSr-HA particles in the suspension was also optimized via the DoE approach.
View Article and Find Full Text PDFJ Biomed Mater Res A
December 2018
In this study, chitosan/bioactive glass (BG)/lawsone coatings were deposited by electrophoretic deposition (EPD) on polyetheretherketone (PEEK)/BG layers (previously deposited by EPD on 316-L stainless steel) to produce bioactive and antibacterial coatings. First, the EPD of chitosan/BG/lawsone was optimized on stainless steel in terms of suspension stability, homogeneity and thickness of coatings. Subsequently, the optimized EPD parameters were used to produce bioresorbable chitosan/bioactive glass (BG)/lawsone coatings on PEEK/BG layers.
View Article and Find Full Text PDF