Publications by authors named "Minghui Qu"

The utilization of nitenpyram for aphid and whitefly control may induce environmental contamination and negative repercussions on non-target organisms. Formerly, we found that nitenpyram would pollute the peripheral and sub-peripheral areas of the adjacent mulberry orchard. Under acute toxicity conditions, nitenpyram induced oxidative damage in silkworms, affected biological metabolism, synthesis, immunity, and signal transduction.

View Article and Find Full Text PDF

Background: Approximately 30% of post-operative breast cancer patients develop shoulder joint movement disorders affecting routine upper limb movement. This study discusses the impact of a neuromuscular joint facilitation (NJF) method on the physical function of breast cancer patients experiencing shoulder dysfunction during chemotherapy after radical surgery.

Methods: This study included 162 female patients who have unilateral breast cancer in a cancer hospital in China.

View Article and Find Full Text PDF
Article Synopsis
  • Deoxyribouridine (dU) is an unusual nucleoside in DNA that has significant roles in various biological processes, and the study investigated proteins that bind to dU.
  • * The research identified heterogeneous nuclear ribonucleoprotein D (HNRNPD) as a key protein that binds to dU-containing DNA and is involved in the cellular response to DNA damage caused by 5-Fluorouracil (5FU).
  • * HNRNPD was shown to facilitate the repair of dU in DNA and promote the bypass of dU during DNA replication, shedding light on its potential role in dU-related diseases.
View Article and Find Full Text PDF

Proteolysis-targeting chimaera (PROTAC) has received extensive attention in industry. However, there are still some limitations that hinder its further development. In a previous study, our group first demonstrated that the HSP90 degrader BP3 synthesised by the principle of PROTACs showed therapeutic potential for cancer.

View Article and Find Full Text PDF

Rationale And Objectives: The research aims to investigate whether MRI radiomics on hepatic metastasis from primary nonsmall cell lung cancer (NSCLC) can be used to differentiate patients with epidermal growth factor receptor (EGFR) mutations from those with EGFR wild-type, and develop a prediction model based on combination of primary tumor and the metastasis.

Materials And Methods: A total of 130 patients were enrolled between Aug. 2017 and Dec.

View Article and Find Full Text PDF

[Purpose] The shoulder joint has a very unstable structure yet a significantly wide range of motion. Weakness of the muscles around the shoulder joint may cause shoulder joint subluxation. This study aimed to determine changes in supraspinatus muscle thickness between different shoulder abduction angles using ultrasonography and to compare differences in supraspinatus muscle thickness changes between the affected and unaffected sides depending on shoulder joint subluxation.

View Article and Find Full Text PDF

Three undescribed oleanane type triterpenoid saponins (1-3), along with one known saponin (4) were isolated from the whole herb of Hylomecon japonica. Their structures were elucidated by analysis of 1D and 2D-NMR (H-H COSY, HSQC, and HMBC) spectroscopic data, mass spectrometry (HR-ESI-MS) and chromatographic date (GC and LC) as 3-O-β-d-glucopyranosyl-(1 → 2)-β-d-glucuronopyranosyl gypsogenin 28-O-β-d-galactopyranosyl-(1 → 3)-[β-d-xylopyranosyl-(1 → 4)]-α-l-rhamnopyranosyl-(1 → 2)-β-l-arabinopyranosyl ester (1), 3-O-β-d-galactopyranosyl-(1 → 2)-β-d-glucuronopyranosyl gypsogenin 28-O-α-l-arabinopyranosyl-(1 → 3)-[β-d-xylopyranosyl-(1 → 4)]-α-l-rhamnopyranosyl-(1 → 2)-β-l-arabinopyranosyl ester (2), 3-O-β-d-galactopyranosyl-(1 → 2)-β-d-glucuronopyranosyl gypsogenin 28-O-β-d-galactopyranosyl-(1 → 3)-[β-d-xylopyranosyl-(1 → 4)]-α-l-rhamnopyranosyl-(1 → 2)-β-d-galactopyranosyl ester (3), 3-O-β-d-galactopyranosyl-(1 → 2)-[α-l-arabinopyranosyl-(1 → 3)]-β-d-glucuronopyranosyl gypsogenin 28-O-β-d-glucopyranosyl-(1 → 3)-[β-d-xylopyranosyl-(1 → 4)]-α-l-rhamnopyranosyl-(1 → 2)-β-d-fucopyranosyl ester (4). All saponins possess a partial sequence β-d-galactopyranosyl-(1 → 2)-β-d-glucuronopyranosyl at C-3 of the aglycon.

View Article and Find Full Text PDF

Six undescribed oleanane-type saponins, named as Hylomeconosides L-Q, were isolated from the whole herb of Hylomecon Japonica, their structures were determined by analysis of 1D and 2D-NMR (H-H COSY, HSQC, and HMBC) spectroscopic data, mass spectrometry (HRESI-MS) and chromatographic data (GC and LC). Their structures were identified as 3-O-β-D-galactopyranosyl-(1 → 2)-β-D-glucuronopyranosyl gypsogenin 28-O-β-D-galactopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)-β-L-arabinopyranoside; 3-O-β-D-galactopyranosyl-(1 → 2)-β-D-glucuronopyranosyl gypsogenin 28-O-β-D-xylopyranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 2)-β-D-quinovopyranoside; 3-O-β-D-glucuronopyranosyl gypsogenin 28-O-β-D-xylopyranosyl-(1 → 3)-β-D-xylopyranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 2)-β-D-quinovopyranoside; 3-O-β-D-xylopyranosyl-(1 → 3)-β-D-glucuronopyranosyl gypsogenin 28-O-β-D-xylopyranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 2)-β-D-quinovopyranoside; 3-O-β-D-galactopyranosyl-(1 → 2)-[α-L-rhamnopyranosyl-(1 → 3)]-β-D-glucuronopyranosyl quillaic acid 28-O-β-D-xylopyranosyl-(1 → 3)-β-D-xylopyranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 2)-β-D-quinovopyranoside; 3-O-β-D-galactopyranosyl-(1 → 2)-[α-L-rhamnopyranosyl-(1 → 3)]-β-D-glucuronopyranosyl quillaic acid 28-O-β-D-xylopyranosyl-(1 → 3)-β-D-xylopyranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 2)-β-D-galactopyranoside. Hylomeconosides L-Q showed selective cytotoxicities against human cancer cell lines A549, AGS, HeLa, Huh 7, HT29 and K562.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers developed a new chemical proteomic strategy using a biotinylated UTP probe and LC-MS/MS to identify and quantify UTP-binding proteins on a large scale.
  • * By identifying over 70 potential UTP-binding proteins involved in cellular processes like translation and protein folding, this study marks the first comprehensive analysis of UTP-binding proteins in the human proteome.
View Article and Find Full Text PDF

Six undescribed triterpenoid saponins, named as hylomeconoside C-H, were isolated from the EtOH extract of Hylomecon japonica. On the basis of spectroscopic and chemical evidence, their structures were identified as 3-O-β-D-galactopyranosyl-(1 → 2)-β-D-glucuronopyranosyl gypsogenin 28-O-α-L-rhamnopyranosyl-(1 → 2)-β-L-arabinopyranoside; 3-O-β-D-galactopyranosyl-(1 → 2)-β-D-glucuronopyranosyl gypsogenin 28-O-β-D-xylopyranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 2)-β-L-arabinopyranoside; 3-O-β-D-galactopyranosyl-(1 → 2)-[α-L-arabinopyranosyl-(1 → 3)]-β-D-glucuronopyranosyl gypsogenin 28-O-β-D-glucopyranosyl-(1 → 3)-[β-D-xylopyranosyl-(1 → 4)]-α-L-rhamnopyranosyl-(1 → 2)-β-L-arabinopyranoside; 3-O-β-D-galactopyranosyl-(1 → 2)-β-D-glucuronopyranosyl gypsogenin 28-O-β-D-galactopyranosyl-(1 → 3)-[β-D-xylopyranosyl-(1 → 4)]-α-L-rhamnopyranosyl-(1 → 2)-β-D-fucopyranoside; 3-O-α-L-rhamnopyranosyl-(1 → 3)-[β-D-galactopyranosyl-(1 → 4)]-β-D-glucuronopyranosyl quillaic acid 28-O-β-D-galactopyranosyl-(1 → 3)-[β-D-xylopyranosyl-(1 → 4)]-α-L-rhamnopyranosyl-(1 → 2)-β-D-fucopyranoside; 3-O-α-L-rhamnopyranosyl-(1 → 3)-[β-D-galactopyranosyl-(1 → 4)]-β-D-glucuronopyranosyl quillaic acid 28-O-β-D-xylopyranosyl-(1 → 3)-β-D-xylopyranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 2)-β-D-quinovopyranoside. The 50% EtOH extract showed moderate inhibitory activity on the human cancer cell line HeLa, HepG-2, MCF-7, A549, K562 and TE-1.

View Article and Find Full Text PDF