Electrochemistry can enable sustainable chemical manufacturing but is limited by the reactions possible with conventional metal electrodes. Plasma electrochemistry, which replaces a conventional solid electrode with plasma in electrochemical cells, opens new avenues for chemical synthesis by combining Faradaic and non-Faradaic processes at the plasma-liquid interface. To understand how plasma electrochemistry differs from conventional electrochemistry, we investigated plasma reactions with acrylonitrile, an industrially relevant molecule used as the precursor in the well-characterized electrosynthesis of adiponitrile.
View Article and Find Full Text PDFElectrosynthesis at an industrial scale offers an opportunity to use renewable electricity in chemical manufacturing, accelerating the decarbonization of large-scale chemical processes. Organic electrosynthesis can improve product selectivity, reduce reaction steps, and minimize waste byproducts. Electrochemical synthesis of adiponitrile (ADN) via hydrodimerization of acrylonitrile (AN) is a prominent example of industrial organic electrochemical processes, with annual production reaching 0.
View Article and Find Full Text PDFOlefin-paraffin separation is a critical yet energy-intensive process in the chemical industry, accounting for over 250 trillion BTU/year of global energy consumption. This work explores the use of redox-active nickel maleonitriledithiolate complex for olefin-paraffin separations. Key performance factors, namely the electrochemical oxidation of the complex and the olefin capture utilization fraction, were systematically quantified.
View Article and Find Full Text PDFAnnu Rev Chem Biomol Eng
June 2023
Electrochemical synthesis of organic chemical commodities provides an alternative to conventional thermochemical manufacturing and enables the direct use of renewable electricity to reduce greenhouse gas emissions from the chemical industry. We discuss electrochemical synthesis approaches that use abundant carbon feedstocks for the production of the largest petrochemical precursors and basic organic chemical products: light olefins, olefin oxidation derivatives, aromatics, and methanol. First, we identify feasible routes for the electrochemical production of each commodity while considering the reaction thermodynamics, available feedstocks, and competing thermochemical processes.
View Article and Find Full Text PDFIn perovskite solar cells, doped organic semiconductors are often used as charge-extraction interlayers situated between the photoactive layer and the electrodes. The π-conjugated small molecule 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9-spirobifluorene (spiro-OMeTAD) is the most frequently used semiconductor in the hole-conducting layer, and its electrical properties considerably affect the charge collection efficiencies of the solar cell. To enhance the electrical conductivity of spiro-OMeTAD, lithium bis(trifluoromethane)sulfonimide (LiTFSI) is typically used in a doping process, which is conventionally initiated by exposing spiro-OMeTAD:LiTFSI blend films to air and light for several hours.
View Article and Find Full Text PDFRapid improvements in polymer-electrolyte fuel-cell (PEFC) performance have been driven by the development of commercially available ion-conducting polymers (ionomers) that are employed as membranes and catalyst binders in membrane-electrode assemblies. Commercially available ionomers are based on a perfluorinated chemistry comprised of a polytetrafluoroethylene (PTFE) matrix that imparts low gas permeability and high mechanical strength but introduces significant mass-transport losses in the electrodes. These transport losses currently limit PEFC performance, especially for low Pt loadings.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2019
Organic electrosynthesis can transform the chemical industry by introducing electricity-driven processes that are more energy efficient and that can be easily integrated with renewable energy sources. However, their deployment is severely hindered by the difficulties of controlling selectivity and achieving a large energy conversion efficiency at high current density due to the low solubility of organic reactants in practical electrolytes. This control can be improved by carefully balancing the mass transport processes and electrocatalytic reaction rates at the electrode diffusion layer through pulsed electrochemical methods.
View Article and Find Full Text PDFOrthorhombic tin monosulfide (SnS) consists of layers of covalently bound Sn and S atoms held together by weak van der Waals forces and is a stable two-dimensional material with potentially useful properties in emerging applications such as valleytronics. Large-scale sustainable synthesis of few-layer (e.g.
View Article and Find Full Text PDFInertial microfluidics is an active field of research that deals with crossflow positioning of the suspended entities in microflows. Until now, the majority of the studies have focused on the behavior of rigid particles in order to provide guidelines for microfluidic applications such as sorting and filtering. Deformable entities such as bubbles and droplets are considered in fewer studies despite their importance in multiphase microflows.
View Article and Find Full Text PDFChlorine is a large-scale chemical commodity produced via the chloralkali process, which involves the electrolysis of brine in a membrane-based electrochemical reactor. The reaction is normally driven by grid electricity; nevertheless, the required combination of voltage-current can be guaranteed using renewable power (i.e.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2016
An integrated cell for the solar-driven splitting of water consists of multiple functional components and couples various photoelectrochemical (PEC) processes at different length and time scales. The overall solar-to-hydrogen (STH) conversion efficiency of such a system depends on the performance and materials properties of the individual components as well as on the component integration, overall device architecture, and system operating conditions. This Review focuses on the modeling- and simulation-guided development and implementation of solar-driven water-splitting prototypes from a holistic viewpoint that explores the various interplays between the components.
View Article and Find Full Text PDFAnnu Rev Chem Biomol Eng
July 2016
Devices that directly capture and store solar energy have the potential to significantly increase the share of energy from intermittent renewable sources. Photo-electrochemical solar-hydrogen generators could become an important contributor, as these devices can convert solar energy into fuels that can be used throughout all sectors of energy. Rather than focusing on scientific achievement on the component level, this article reviews aspects of overall component integration in photo-electrochemical water-splitting devices that ultimately can lead to deployable devices.
View Article and Find Full Text PDFACS Macro Lett
January 2015
Nafion is an ion-containing random copolymer used as a solid electrolyte in many electrochemical applications thanks to its remarkable ionic conductivity and mechanical stability. Understanding the mechanism of ion transport in Nafion, which depends strongly on hydration, therefore requires a complete picture of its morphology in dry and hydrated form. Here we report on a nanoscale study of dry versus hydrated as-cast 100 nm Nafion membranes using analytical transmission electron microscopy (TEM) and cryogenic TEM tomography, respectively.
View Article and Find Full Text PDFACS Macro Lett
January 2015
Highly transparent and effective encapsulating materials have become increasingly important for photovoltaic (PV) modules to prevent water vapor molecules from permeating PV cells. The composite consists of block copolymer (PS--P2VP), comprised of hydrophobic and hydrophilic parts, and hygroscopic nanocrystals (Magnesium Oxide, MgO) incorporated to enhance water vapor blocking by both presenting obstacles for mass transport and also scavenging water molecules. The water vapor transmission rate (WVTR) values were reduced ∼3000 times, compared to homopolymer (PS), for both polymer and composite samples.
View Article and Find Full Text PDFBlock copolymer thin films with distinct morphologies are prepared by spin casting a nominally lamellar assay of poly(styrene-block-ethylene oxide) from a variety of solvents with and without salt doping. The 3-D morphologies of free-standing thin-film regions, which are obtained by casting directly onto holey substrates, are investigated in detail using various energy-filtering transmission electron microscopy techniques and by electron tomography. Surface characterization is achieved by atomic force microscopy.
View Article and Find Full Text PDFJ Synchrotron Radiat
September 2012
A fluctuation X-ray scattering experiment has been carried out on platinum-coated gold nanoparticles randomly oriented on a substrate. A complete algorithm for determining the electron density of an individual particle from diffraction patterns of many particles randomly oriented about a single axis is demonstrated. This algorithm operates on angular correlations among the measured intensity distributions and recovers the angular correlation functions of a single particle from measured diffraction patterns.
View Article and Find Full Text PDFThe ability of the Nafion membrane to absorb water rapidly and create a network of hydrated interconnected water domains provides this material with an unmatched ability to conduct ions through a chemically and mechanically robust membrane. The morphology and composition of these hydrated membranes significantly affects their transport properties and performance. This work demonstrates that differences in interfacial interactions between the membranes exposed to vapor or liquid water can cause significant changes in kinetics of water uptake.
View Article and Find Full Text PDF