J Magn Reson Imaging
December 2024
Background: In patients with bicuspid aortic valve (BAV), 4D flow MRI can quantify regions exposed to abnormal aortic hemodynamics, including high wall shear stress (WSS), a known stimulus for arterial wall dysfunction. However, the long-term multiscan reproducibility of 4D flow MRI-derived hemodynamic parameters is unknown.
Purpose: To investigate the long-term stability of 4D flow MRI-derived peak velocity, WSS, and WSS-derived heatmaps in patients with BAV undergoing multiyear surveillance imaging.
This study aims to assess whether the On-X aortic valved conduit better restores normal valvular and ascending aortic hemodynamics than other commonly used bileaflet mechanical valved conduit prostheses from St. Jude Medical and Carbomedics by using same-day transthoracic echocardiography (TTE) and 4D flow magnetic resonance imaging (MRI) examinations. TTE and 4D flow MRI were performed back-to-back in 10 patients with On-X, six patients with St.
View Article and Find Full Text PDFThe Arctic is among the most climatically sensitive environments on Earth, and the disappearance of multiyear sea ice in the Arctic Ocean is predicted within decades. As apex predators, polar bears are sentinel species for addressing the impact of environmental variability on Arctic marine ecosystems. By integrating genomics, isotopic analysis, morphometrics, and ecological modeling, we investigate how Holocene environmental changes affected polar bears around Greenland.
View Article and Find Full Text PDFIn this research, a pipeline was developed to assess the out-of-sample predictive capability of structure-based constitutive models of ascending aortic aneurysmal tissue. The hypothesis being tested is that a biomarker can help establish similarities among tissues sharing the same level of a quantifiable property, thus enabling the development of biomarker-specific constitutive models. Biomarker-specific averaged material models were constructed from biaxial mechanical tests of specimens that shared similar biomarker properties such as level of blood-wall shear stress or microfiber (elastin or collagen) degradation in the extracellular matrix.
View Article and Find Full Text PDFObjective: In this study we aimed to conclusively determine whether altered aortic biomechanics are associated with wall shear stress (WSS) independent of region of tissue collection. Elevated WSS in the ascending aorta of patients with bicuspid aortic valve has been shown to contribute to local maladaptive aortic remodeling and might alter biomechanics.
Methods: Preoperative 4-dimensional flow magnetic resonance imaging was performed on 22 patients who underwent prophylactic aortic root and/or ascending aorta replacement.
Objectives: Time-resolved, 2D-phase-contrast MRI (2D-CINE-PC-MRI) enables in vivo blood flow analysis. However, accurate vessel contour delineation (VCD) is required to achieve reliable results. We sought to evaluate manual analysis (MA) compared to the performance of a deep learning (DL) application for fully-automated VCD and flow quantification and corrected semi-automated analysis (corSAA).
View Article and Find Full Text PDFPolyphenolic compounds have a variety of functions in plants including protecting them from a range of abiotic and biotic stresses such as pathogenic infections, ionising radiation and as signalling molecules. They are common constituents of human and animal diets, undergoing extensive metabolism by gut microbiota in many cases prior to entering circulation. They are linked to a range of positive health effects, including anti-oxidant, anti-inflammatory, antibiotic and disease-specific activities but the relationships between polyphenol bio-transformation products and their interactions in vivo are less well understood.
View Article and Find Full Text PDFBackground: Aortopathy is common with bicuspid aortic valve (BAV), and underlying intrinsic tissue abnormalities are believed causative. Valve-mediated hemodynamics are altered in BAV and may contribute to aortopathy and its progression. The contribution of intrinsic tissue defects versus altered hemodynamics to aortopathy progression is not known.
View Article and Find Full Text PDFDiagn Interv Imaging
September 2022
Purpose: The purpose of this study was to investigate the relationships between hemodynamic parameters and longitudinal changes in aortic dimensions on four-dimensional (4D) flow magnetic resonance imaging (MRI) in patients with bicuspid aortic valve (BAV) and repaired coarctation.
Materials And Methods: The study retrospectively included patients with BAV and childhood coarctation repair who had at least two cardiothoracic MRI examinations including 4D flow MRI at baseline and follow-up. Analysis included the calculation of aortic peak velocities, wall shear stress (WSS), pulse wave velocity (PWV), aortic dimensions and annual growth rates.
Purpose: To develop a convolutional neural network (CNN) for the robust and fast correction of velocity aliasing in 4D-flow MRI.
Methods: This study included 667 adult subjects with aortic 4D-flow MRI data with existing velocity aliasing (n = 362) and no velocity aliasing (n = 305). Additionally, 10 controls received back-to-back 4D-flow scans with systemically varied velocity-encoding sensitivity (vencs) at 60, 100, and 175 cm/s.
J Magn Reson Imaging
August 2022
Background: Evaluation of aortic stiffness by pulse wave velocity (PWV) across the adult lifespan is needed to better understand normal aging in women and men.
Purpose: To characterize PWV in the thoracic aorta using 4D flow MRI in an age- and sex-stratified cohort of healthy adults.
Study Type: Retrospective.
Background: Automated segmentation using convolutional neural networks (CNNs) have been developed using four-dimensional (4D) flow magnetic resonance imaging (MRI). To broaden usability for congenital heart disease (CHD), training with multi-institution data is necessary. However, the performance impact of heterogeneous multi-site and multi-vendor data on CNNs is unclear.
View Article and Find Full Text PDFJACC Cardiovasc Imaging
January 2022
Objectives: The aim of this study was to evaluate the role of wall shear stress (WSS) as a predictor of ascending aorta (AAo) growth at 5 years or greater follow-up.
Background: Aortic 4-dimensional flow cardiac magnetic resonance (CMR) can quantify regions exposed to high WSS, a known stimulus for arterial wall dysfunction. However, its association with longitudinal changes in aortic dilation in patients with bicuspid aortic valve (BAV) is unknown.
Deep learning algorithms for left ventricle (LV) segmentation are prone to bias towards the training dataset. This study assesses sex- and age-dependent performance differences when using deep learning for automatic LV segmentation. Retrospective analysis of 100 healthy subjects undergoing cardiac MRI from 2012 to 2018, with 10 men and women in the following age groups: 18-30, 31-40, 41-50, 51-60, and 61-80 years old.
View Article and Find Full Text PDFIEEE Trans Med Imaging
December 2021
A novel divergence-free constrained phase unwrapping method was proposed and evaluated for 4D flow MRI. The unwrapped phase field was obtained by integrating the phase variations estimated from the wrapped phase data using weighted least-squares. The divergence-free constraint for incompressible blood flow was incorporated to regulate and denoise the resulting phase field.
View Article and Find Full Text PDFCirc Cardiovasc Imaging
April 2021
Purpose: To systematically assess the feasibility and performance of a highly accelerated compressed sensing (CS) 4D flow MRI framework at three different acceleration factors (R) for the quantification of aortic flow dynamics and wall shear stress (WSS) in patients with aortic disease.
Methods: Twenty patients with aortic disease (58 ± 15 y old; 19 M) underwent four 4D flow scans: one conventional (GRAPPA, R = 2) and three CS 4D flows with R = 5.7, 7.
Objective: The 2019 Coronavirus (COVID-19) results in a wide range of clinical severity and there remains a need for prognostic tools which identify patients at risk of rapid deterioration and who require critical care. Chest radiography (CXR) is routinely obtained at admission of COVID-19 patients. However, little is known regarding correlates between CXR severity and time to intubation.
View Article and Find Full Text PDFBackground: Four-dimensional (D) flow magnetic resonance imaging (MRI) is limited by time-consuming and nonstandardized data analysis. We aimed to test the efficiency and interobserver reproducibility of a dedicated 4D flow MRI analysis workflow.
Materials And Methods: Thirty retrospectively identified patients with bicuspid aortic valve (BAV, age=47.
Purpose: To examine the effects of age, sex, and left ventricular global function on velocity, helicity, and 3D wall shear stress (3D-WSS) in the aorta of N = 100 healthy controls.
Methods: Fifty female and 50 male volunteers with no history of cardiovascular disease, with 10 volunteers per age group (18-30, 31-40, 41-50, 51-60, and 61-80 years) underwent aortic 4D-flow MRI. Quantification of systolic aortic peak velocity, helicity, and 3D-WSS distribution and the calculation of age group-averaged peak systolic velocity and 3D-WSS maps ("atlases") were computed.
Introduction: Metastasis is a fundamentally physical process in which cells deform through narrow gaps and generate forces to invade surrounding tissues. While it is commonly thought that increased cell deformability is an advantage for invading cells, we previously found that more invasive pancreatic ductal adenocarcinoma (PDAC) cells are stiffer than less invasive PDAC cells. Here we investigate potential mechanisms of the simultaneous increase in PDAC cell stiffness and invasion, focusing on the contributions of myosin II, Arp2/3, and formins.
View Article and Find Full Text PDFBackground Four-dimensional (4D) flow MRI enables the evaluation of blood flow alterations in patients with congenital bicuspid aortic valve (BAV). However, current analysis methods are cumbersome and lack the use of the volumetric data from 4D MRI. Purpose To investigate the feasibility and reproducibility of a technique that uses a catheter-like mathematical model (virtual catheter) to assess volumetric intra-aortic hemodynamics from 4D flow MRI in patients with BAV.
View Article and Find Full Text PDFIntegr Biol (Camb)
December 2016
Metastasis is a fundamentally physical process in which cells are required to deform through narrow gaps as they invade surrounding tissues and transit to distant sites. In many cancers, more invasive cells are more deformable than less invasive cells, but the extent to which mechanical phenotype, or mechanotype, can predict disease aggressiveness in pancreatic ductal adenocarcinoma (PDAC) remains unclear. Here we investigate the invasive potential and mechanical properties of immortalized PDAC cell lines derived from primary tumors and a secondary metastatic site, as well as noncancerous pancreatic ductal cells.
View Article and Find Full Text PDFThe mechanical phenotype or 'mechanotype' of cells is emerging as a potential biomarker for cell types ranging from pluripotent stem cells to cancer cells. Using a microfluidic device, cell mechanotype can be rapidly analyzed by measuring the time required for cells to deform as they flow through constricted channels. While cells typically exhibit deformation timescales, or transit times, on the order of milliseconds to tens of seconds, transit times can span several orders of magnitude and vary from day to day within a population of single cells; this makes it challenging to characterize different cell samples based on transit time data.
View Article and Find Full Text PDFFetal alcohol exposure (FAE) can lead to a variety of behavioral and physiological disturbances later in life. Understanding how alcohol (ethanol, EtOH) affects fetal brain development is essential to guide the development of better therapeutics for FAE. One of EtOH's many pharmacological targets is the γ-aminobutyric acid type A receptor (GABAAR), which plays a prominent role in early brain development.
View Article and Find Full Text PDF