Publications by authors named "Maurice Zauderer"

Introduction: Huntington's Disease (HD) is a progressive fatal neurodegenerative disease with an unmet need for disease-modifying therapies. Neuroinflammation, particularly astrogliosis, plays a crucial role in the pathogenesis of HD and modulation of this damaging activity and its downstream effects presents a promising therapeutic avenue. Pepinemab, a semaphorin 4D (SEMA4D) blocking antibody, has the potential to serve this purpose.

View Article and Find Full Text PDF

Purpose: Pepinemab, a humanized IgG4 monoclonal antibody, targets the SEMA4D (CD100) antigen to inhibit binding to its high-affinity receptors (plexin B1/PLXNB1, plexin B2/PLXNB2) and low-affinity receptor (CD72). SEMA4D blockade leads to increased cytotoxic T-cell infiltration, delayed tumor growth, and durable tumor rejection in murine tumor models. Pepinemab was well tolerated and improved T cell infiltration in clinical studies in adults with refractory tumors.

View Article and Find Full Text PDF

Antibody discovery against complex antigens is limited by the availability of a reproducible pure source of concentrated properly folded antigen. We have developed a technology to enable direct incorporation of membrane proteins such as GPCRs and into the membrane of poxvirus. The protein of interest is correctly folded and expressed in the cell-derived viral membrane and does not require any detergents or refolding before downstream use.

View Article and Find Full Text PDF

Directed evolution in bacterial or yeast display systems has been successfully used to improve stability and expression of G protein-coupled receptors for structural and biophysical studies. Yet, several receptors cannot be tackled in microbial systems due to their complex molecular composition or unfavorable ligand properties. Here, we report an approach to evolve G protein-coupled receptors in mammalian cells.

View Article and Find Full Text PDF

SIGNAL is a multicenter, randomized, double-blind, placebo-controlled phase 2 study (no. NCT02481674) established to evaluate pepinemab, a semaphorin 4D (SEMA4D)-blocking antibody, for treatment of Huntington's disease (HD). The trial enrolled a total of 265 HD gene expansion carriers with either early manifest (EM, n = 179) or late prodromal (LP, n = 86) HD, randomized (1:1) to receive 18 monthly infusions of pepinemab (n = 91 EM, 41 LP) or placebo (n = 88 EM, 45 LP).

View Article and Find Full Text PDF

Background: The close interaction and interdependence of astrocytes and neurons allows for the possibility that astrocyte dysfunction contributes to and amplifies neurodegenerative pathology. Molecular pathways that trigger reactive astrocytes may represent important targets to preserve normal homeostatic maintenance and modify disease progression.

Methods: Semaphorin 4D (SEMA4D) expression in the context of disease-associated neuropathology was assessed in postmortem brain sections of patients with Huntington's (HD) and Alzheimer's disease (AD), as well as in mouse models of HD (zQ175) and AD (CVN; APPSwDI/NOS2) by immunohistochemistry.

View Article and Find Full Text PDF

The current research paradigm for Huntington's disease is based on participants with overt clinical phenotypes and does not address its pathophysiology nor the biomarker changes that can precede by decades the functional decline. We have generated a new research framework to standardise clinical research and enable interventional studies earlier in the disease course. The Huntington's Disease Integrated Staging System (HD-ISS) comprises a biological research definition and evidence-based staging centred on biological, clinical, and functional assessments.

View Article and Find Full Text PDF

Rett syndrome is a neurodevelopmental disorder caused by mutations of the methyl-CpG binding protein 2 gene. Abnormal physiological functions of glial cells contribute to pathogenesis of Rett syndrome. Semaphorin 4D (SEMA4D) regulates processes central to neuroinflammation and neurodegeneration including cytoskeletal structures required for process extension, communication, and migration of glial cells.

View Article and Find Full Text PDF

Purpose: The CLASSICAL-Lung clinical trial tested the combination of pepinemab, an IgG4 humanized mAb targeting semaphorin 4D, with the PD-L1 inhibitor avelumab to assess the effects of coupling increased T-cell infiltration and reversal of immune suppression via pepinemab with sustained T-cell activation via checkpoint inhibition.

Patients And Methods: This phase Ib/II, single-arm study was designed to evaluate the safety, tolerability, and efficacy of pepinemab in combination with avelumab in 62 patients with advanced non-small cell lung cancer (NSCLC), including immunotherapy-naïve (ION) patients and patients whose tumors progressed following anti-PD-1/L1 monotherapy (IOF). The main objectives were to evaluate safety/tolerability, establish a recommended phase 2 dose (RP2D), obtain a preliminary evaluation of antitumor activity, and investigate candidate biomarker activity.

View Article and Find Full Text PDF

CD1d-restricted invariant natural killer T cells (iNKT cells) mediate strong antitumor immunity when stimulated by glycolipid agonists. However, attempts to develop effective iNKT cell agonists for clinical applications have been thwarted by potential problems with dose-limiting toxicity and by activation-induced iNKT cell anergy, which limits the efficacy of repeated administration. To overcome these issues, we developed a unique bispecific T-cell engager (BiTE) based on covalent conjugates of soluble CD1d with photoreactive analogues of the glycolipid α-galactosylceramide.

View Article and Find Full Text PDF

Invariant natural killer T (iNKT) cells comprise a unique lineage of CD1d-restricted lipid-reactive T lymphocytes that potently kill tumor cells and exhibit robust immunostimulatory functions. Optimal tumor-directed iNKT cell responses often require expression of the antigen-presenting molecule CD1d on tumors; however, many tumor cells downregulate CD1d and thus evade iNKT cell recognition. We generated a soluble bispecific fusion protein designed to direct iNKT cells to the site of B-cell cancers in a tumor antigen-specific but CD1d-independent manner.

View Article and Find Full Text PDF

Tumor infiltration by immunosuppressive myeloid cells, such as myeloid-derived suppressor cells (MDSCs), causes resistance to immunotherapy. Semaphorin4D, originally characterized for its axonal guidance properties, also contributes to endothelial cell migration and survival and modulates global immune cytokine profiles and myeloid cell polarization within the tumor microenvironment. Here, we show how a therapeutic murine Sema4D mAb improves responses to immune-checkpoint blockade (ICB) in two murine carcinoma models.

View Article and Find Full Text PDF

Activation of invariant natural killer T lymphocytes (iNKT cells) by α-galactosylceramide (α-GC) elicits a range of pro-inflammatory or anti-inflammatory immune responses. We report the synthesis and characterization of a series of α-GC analogues with acyl chains of varying length and a terminal benzophenone. These bound efficiently to the glycolipid antigen presenting protein CD1d, and upon photoactivation formed stable CD1d-glycolipid covalent conjugates.

View Article and Find Full Text PDF

Objective: To evaluate the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of VX15/2503 in a randomized, single-dose, dose-escalation, double-blind, placebo-controlled study enrolling adult patients with MS.

Methods: Single IV doses of VX15/2503 or placebo were administered. Ten patients each were randomized (4:1 randomization ratio) into 5 ascending dose cohorts of 1, 3, 6, 10, or 20 mg/kg.

View Article and Find Full Text PDF

Semaphorin 4D is highly expressed at the invasive tumor margin and acts as a guidance molecule, restricting movement of tumoricidal immune cells into the tumor microenvironment. We recently showed that antibody neutralization of SEMA4D augmented activated monocyte and anticancer T-cell tumor penetration and that anti-SEMA4D antibody potentiated other immunomodulatory therapies in murine tumor models.

View Article and Find Full Text PDF

Background: Receptor occupancy, or saturation, assays are often utilized in preclinical and clinical development programs to evaluate the binding of a biologic to a cellular target. These assays provide critical information regarding the dose of drug required to "saturate" the target as well as important pharmacodymamic (PD) data. A flow cytometric method was developed to measure the degree of Semaphorin 4D (SEMA4D; CD100) saturation by VX15/2303, an investigational monoclonal antibody specific for SEMA4D.

View Article and Find Full Text PDF

Purpose: Study objectives included evaluating the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and antitumor activity of VX15/2503 in advanced solid tumor patients.

Experimental Design: Weekly i.v.

View Article and Find Full Text PDF

Semaphorin 4D (SEMA4D or CD100) is a member of the semaphorin family of proteins and an important mediator of the movement and differentiation of multiple cell types, including those of the immune, vascular, and nervous systems. Blocking the binding of SEMA4D to its receptors can result in physiologic changes that may have implications in cancer, autoimmune, and neurological disease. To study the effects of blocking SEMA4D, we generated, in SEMA4D-deficient mice, a panel of SEMA4D-specific hybridomas that react with murine, primate, and human SEMA4D.

View Article and Find Full Text PDF

Background: Homeostatic B Cell-Attracting chemokine 1 (BCA-1) otherwise known as CXCL13 is constitutively expressed in secondary lymphoid organs by follicular dendritic cells (FDC) and macrophages. It is the only known ligand for the CXCR5 receptor, which is expressed on mature B cells, follicular helper T cells (Tfh), Th17 cells and regulatory T (Treg) cells. Aberrant expression of CXCL13 within ectopic germinal centers has been linked to the development of autoimmune disorders (e.

View Article and Find Full Text PDF

Huntington disease (HD) is an inherited, fatal neurodegenerative disease with no disease-modifying therapy currently available. In addition to characteristic motor deficits and atrophy of the caudate nucleus, signature hallmarks of HD include behavioral abnormalities, immune activation, and cortical and white matter loss. The identification and validation of novel therapeutic targets that contribute to these degenerative cellular processes may lead to new interventions that slow or even halt the course of this insidious disease.

View Article and Find Full Text PDF

The humanized IgG4 monoclonal antibody VX15/2503 bound with 1 to 5 nmol/L affinity to purified recombinant semaphorin 4D (SEMA4D; CD100) produced using murine, rat, cynomolgus macaque, and human sequences. The affinity for native SEMA4D expressed on macaque T lymphocytes was approximately 0.6 nmol/L.

View Article and Find Full Text PDF

Semaphorin 4D (SEMA4D, CD100) and its receptor plexin-B1 (PLXNB1) are broadly expressed in murine and human tumors, and their expression has been shown to correlate with invasive disease in several human tumors. SEMA4D normally functions to regulate the motility and differentiation of multiple cell types, including those of the immune, vascular, and nervous systems. In the setting of cancer, SEMA4D-PLXNB1 interactions have been reported to affect vascular stabilization and transactivation of ERBB2, but effects on immune-cell trafficking in the tumor microenvironment (TME) have not been investigated.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic neuroinflammatory disease characterized by immune cell infiltration of CNS, blood-brain barrier (BBB) breakdown, localized myelin destruction, and progressive neuronal degeneration. There exists a significant need to identify novel therapeutic targets and strategies that effectively and safely disrupt and even reverse disease pathophysiology. Signaling cascades initiated by semaphorin 4D (SEMA4D) induce glial activation, neuronal process collapse, inhibit migration and differentiation of oligodendrocyte precursor cells (OPCs), and disrupt endothelial tight junctions forming the BBB.

View Article and Find Full Text PDF