98%
921
2 minutes
20
SIGNAL is a multicenter, randomized, double-blind, placebo-controlled phase 2 study (no. NCT02481674) established to evaluate pepinemab, a semaphorin 4D (SEMA4D)-blocking antibody, for treatment of Huntington's disease (HD). The trial enrolled a total of 265 HD gene expansion carriers with either early manifest (EM, n = 179) or late prodromal (LP, n = 86) HD, randomized (1:1) to receive 18 monthly infusions of pepinemab (n = 91 EM, 41 LP) or placebo (n = 88 EM, 45 LP). Pepinemab was generally well tolerated, with a relatively low frequency of serious treatment-emergent adverse events of 5% with pepinemab compared to 9% with placebo, including both EM and LP participants. Coprimary efficacy outcome measures consisted of assessments within the EM cohort of (1) a two-item HD cognitive assessment family comprising one-touch stockings of Cambridge (OTS) and paced tapping (PTAP) and (2) clinical global impression of change (CGIC). The differences between pepinemab and placebo in mean change (95% confidence interval) from baseline at month 17 for OTS were -1.98 (-4.00, 0.05) (one-sided P = 0.028), and for PTAP 1.43 (-0.37, 3.23) (one-sided P = 0.06). Similarly, because a significant treatment effect was not observed for CGIC, the coprimary endpoint, the study did not meet its prespecified primary outcomes. Nevertheless, a number of other positive outcomes and post hoc subgroup analyses-including additional cognitive measures and volumetric magnetic resonance imaging and fluorodeoxyglucose-positron-emission tomography imaging assessments-provide rationale and direction for the design of a phase 3 study and encourage the continued development of pepinemab in patients diagnosed with EM HD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9361919 | PMC |
http://dx.doi.org/10.1038/s41591-022-01919-8 | DOI Listing |
Cell Biochem Biophys
September 2025
Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India.
Aging Cell
September 2025
Department of Cell Systems & Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA.
The Hippo signaling pathway is a key regulator of cell growth and cell survival, and hyperactivation of the Hippo pathway has been implicated in neurodegenerative diseases such as Huntington's disease. However, the role of Hippo signaling in Alzheimer's disease (AD) remains unclear. We observed that hyperactivation of Hippo signaling occurred in the AD model 5xFAD mice.
View Article and Find Full Text PDFCureus
August 2025
Internal Medicine, Jinnah Postgraduate Medical Centre, Karachi, PAK.
Neurodegenerative diseases and spinal cord injuries (SCI) pose a significant burden on the healthcare system globally. Diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease precipitate cognitive, motor, and behavioral deficits. Parallelly, spinal cord injuries produce sensory and motor deficits, which are burdensome psychologically, socially, and economically.
View Article and Find Full Text PDFMov Disord Clin Pract
September 2025
Department of neuroscience, UC San Diego, San Diego, California, USA.
Background: Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutation in the huntingtin gene on chromosome 4, leading to progressive cognitive decline, motor impairment, and functional disability. Although balance impairment is recognized in HD, its onset and evolution with disease stage remain poorly understood.
Objective: The aim was to track the onset and evolution of balance impairment in HD with progression of disease stage using the BTrackS Balance Plate.