Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Semaphorin 4D (SEMA4D, CD100) and its receptor plexin-B1 (PLXNB1) are broadly expressed in murine and human tumors, and their expression has been shown to correlate with invasive disease in several human tumors. SEMA4D normally functions to regulate the motility and differentiation of multiple cell types, including those of the immune, vascular, and nervous systems. In the setting of cancer, SEMA4D-PLXNB1 interactions have been reported to affect vascular stabilization and transactivation of ERBB2, but effects on immune-cell trafficking in the tumor microenvironment (TME) have not been investigated. We describe a novel immunomodulatory function of SEMA4D, whereby strong expression of SEMA4D at the invasive margins of actively growing tumors influences the infiltration and distribution of leukocytes in the TME. Antibody neutralization of SEMA4D disrupts this gradient of expression, enhances recruitment of activated monocytes and lymphocytes into the tumor, and shifts the balance of cells and cytokines toward a proinflammatory and antitumor milieu within the TME. This orchestrated change in the tumor architecture was associated with durable tumor rejection in murine Colon26 and ERBB2(+) mammary carcinoma models. The immunomodulatory activity of anti-SEMA4D antibody can be enhanced by combination with other immunotherapies, including immune checkpoint inhibition and chemotherapy. Strikingly, the combination of anti-SEMA4D antibody with antibody to CTLA-4 acts synergistically to promote complete tumor rejection and survival. Inhibition of SEMA4D represents a novel mechanism and therapeutic strategy to promote functional immune infiltration into the TME and inhibit tumor progression.

Download full-text PDF

Source
http://dx.doi.org/10.1158/2326-6066.CIR-14-0171DOI Listing

Publication Analysis

Top Keywords

immune infiltration
8
human tumors
8
including immune
8
tumor rejection
8
anti-sema4d antibody
8
tumor
7
sema4d
6
antibody
5
antibody blockade
4
blockade semaphorin
4

Similar Publications

Cachexia, the loss of skeletal muscle mass and function with cancer, contributes to reduced life quality and worsened survival. Skeletal muscle fibrosis leads to disproportionate muscle weakness; however, the role of infiltrating immune cells and fibro-adipogenic progenitors (FAPs) in cancer-induced muscle fibrosis is not well understood. Using the C26 model of cancer cachexia, we sought to examine the changes to skeletal muscle immune cells and FAPs which contribute to excessive extracellular matrix (ECM) collagen deposition.

View Article and Find Full Text PDF

Background: Ankylosing spondylitis (AS), a chronic inflammatory disorder affecting axial joints, is frequently complicated by uveitis. However, the molecular mechanisms linking AS to secondary uveitis remain poorly understood.

Methods: We integrated transcriptomic datasets from AS (GSE73754) and uveitis (GSE194060) cohorts to identify shared molecular pathways.

View Article and Find Full Text PDF

Purpose: Liposarcoma (LPS) is the most common soft tissue sarcoma. Well-differentiated LPS (WDLPS) can progress to dedifferentiated LPS (DDLPS), a more aggressive form with higher metastatic potential and poor response to existing therapies. Progress in understanding and treating LPS has been limited.

View Article and Find Full Text PDF

Microscopic examination of biopsy tissues remains essential for cancer diagnosis, despite advancements in sequencing technologies. Alterations in nuclear size or the nuclear-to-cytoplasmic ratio are hallmark features of cancer cells and often correlate with disease progression. However, the mechanisms underlying nuclear size abnormalities and their impact on tumor progression remain unclear.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) therapies have demonstrated remarkable clinical efficacy in hematological malignancies, validating their therapeutic potential. However, challenges such as therapeutic resistance and limited accessibility hinder their broader application. To overcome these limitations, alternative CAR-based cell therapies, including CAR-Natural Killer (CAR-NK), CAR-macrophage (CAR-M), and CAR-dendritic cell (CAR-DC) therapies, have been proposed.

View Article and Find Full Text PDF