Front Bioeng Biotechnol
July 2023
Dogs () prefer the walk at lower speeds and the more economical trot at speeds ranging from 0.5 Fr up to 3 Fr. Important works have helped to understand these gaits at the levels of the center of mass, joint mechanics, and muscular control.
View Article and Find Full Text PDFOur knowledge about the underlying pathomechanisms of craniocervical junction abnormalities (CCJA) in dogs mostly derives from measurements based on tomographic imaging. These images are static and the positioning of the dogs' head does not reflect the physiological in vivo position of the craniocervical junction (CCJ). Aberrant motion patterns and ranges of motion (ROM) in sound individuals of CCJA predisposed breeds may be a pathogenetic trigger.
View Article and Find Full Text PDFSmall cursorial birds display remarkable walking skills and can negotiate complex and unstructured terrains with ease. The neuromechanical control strategies necessary to adapt to these challenging terrains are still not well understood. Here, we analyzed the 2D- and 3D pelvic and leg kinematic strategies employed by the common quail to negotiate visible steps (upwards and downwards) of about 10%, and 50% of their leg length.
View Article and Find Full Text PDFLumbosacral vertebral motion is thought to be a factor in the development of degenerative lumbosacral stenosis in German shepherd dogs. So far, few studies exist describing natural canine lumbosacral movement . Therefore, this investigation aims to achieve a detailed analysis of bone movement of the lumbosacral region to gain a better understanding of the origin of degenerative lumbosacral stenosis using three-dimensional non-invasive analysis of canine pelvic and caudal lumbar motion (at L6 and L7).
View Article and Find Full Text PDFAll vertebrate species have a distinct morphology and movement pattern, which reflect the adaption of the animal to its habitat. Yet, our knowledge of motion patterns of the craniocervical junction of dogs is very limited. The aim of this prospective study is to perform a detailed analysis and description of three-dimensional craniocervical motion during locomotion in clinically sound Chihuahuas and Labrador retrievers.
View Article and Find Full Text PDFManeuverability is of paramount importance for many animals, e.g., in predator-prey interactions.
View Article and Find Full Text PDFThe domestic dog is interesting to investigate because of the wide range of body size, body mass, and physique in the many breeds. In the last several years, the number of clinical and biomechanical studies on dog locomotion has increased. However, the relationship between body structure and joint load during locomotion, as well as between joint load and degenerative diseases of the locomotor system (e.
View Article and Find Full Text PDFBackground: French bulldogs exhibit significantly larger femoral external rotation and abduction than other breeds. We were curious as to whether this peculiar leg kinematic affects patellar motion and/or might induce medial patellar subluxation (MPSL) or medial patellar permanent luxation (MPPL). We hypothesized that the more abducted leg posture during stance causes an unusual medial pull direction of the rectus femoris muscle during stance, and that this may facilitate the occurrence of MPSL or even MPPL during locomotion.
View Article and Find Full Text PDFA considerable body of work has examined the dynamics of different dog gaits, but there are no studies that have focused on limb dynamics in jumping. Jumping is an essential part of dog agility, a dog sport in which handlers direct their dogs through an obstacle course in a limited time. We hypothesized that limb parameters like limb length and stiffness indicate the skill level of dogs.
View Article and Find Full Text PDFThis work demonstrates a neuromechanical model of rat hindlimb locomotion undergoing nominal walking with perturbations. In the animal, two types of responses to perturbations are observed: resetting and non-resetting deletions. This suggests that the animal locomotor system contains a memory-like organization.
View Article and Find Full Text PDFReconstructing the locomotion of extinct vertebrates offers insights into their palaeobiology and helps to conceptualize major transitions in vertebrate evolution. However, estimating the locomotor behaviour of a fossil species remains a challenge because of the limited information preserved and the lack of a direct correspondence between form and function. The evolution of advanced locomotion on land-that is, locomotion that is more erect, balanced and mechanically power-saving than is assumed of anamniote early tetrapods-has previously been linked to the terrestrialization and diversification of amniote lineages.
View Article and Find Full Text PDFThe first high-precision 3D in vivo hindlimb kinematic data to be recorded in normal dogs of four different breeds (Beagle, French bulldog, Malinois, Whippet) using biplanar, high-frequency fluoroscopy combined with a 3D optoelectric system followed by a markerless XROMM analysis (Scientific Rotoscoping, SR or 3D-2D registration process) reveal a) 3D hindlimb kinematics to an unprecedented degree of precision and b) substantial limitations to the use of skin marker-based data. We expected hindlimb kinematics to differ in relation to body shape. But, a comparison of the four breeds sets the French bulldog aside from the others in terms of trajectories in the frontal plane (abduction/adduction) and long axis rotation of the femur.
View Article and Find Full Text PDFThe whole-organ, three-dimensional microstructure of murine Achilles tendon entheses was visualized with micro-computed tomography (microCT). Contrast-enhancement was achieved either by staining with phosphotungstic acid (PTA) or by a combination of cell-maceration, demineralization and critical-point drying with low tube voltages and propagation-based phase-contrast (fibrous structure scan). By PTA-staining, X-ray absorption of the enthesial soft tissues became sufficiently high to segment the tendon and measure cross-sectional areas along its course.
View Article and Find Full Text PDFEndosymbiotic interactions are frequently found in nature, especially in the group of protists. Even though many endosymbioses have been studied in detail, little is known about the mechanistic origins and physiological prerequisites of endosymbiont establishment. A logical step towards the development of endocytobiotic associations is evading digestion and escaping from the host's food vacuoles.
View Article and Find Full Text PDFBMC Evol Biol
December 2017
Background: The increase in locomotor and metabolic performance during mammalian evolution was accompanied by the limitation of the number of cervical vertebrae to only seven. In turn, nuchal muscles underwent a reorganization while forelimb muscles expanded into the neck region. As variation in the cervical spine is low, the variation in the arrangement of the neck muscles and their attachment sites (i.
View Article and Find Full Text PDFThe temporomandibular joint (TMJ) conducts and restrains masticatory movements between the mammalian cranium and the mandible. Through this functional integration, TMJ morphology in wild mammals is strongly correlated with diet, resulting in a wide range of TMJ variations. However, in artificially selected and closely related domestic dogs, dietary specialisations between breeds can be ruled out as a diversifying factor although they display an enormous variation in TMJ morphology.
View Article and Find Full Text PDFThe skull shape variation in domestic dogs exceeds that of grey wolves by far. The artificial selection of dogs has even led to breeds with mismatching upper and lower jaws and maloccluded teeth. For that reason, it has been advocated that their skulls (including the teeth) can be divided into more or less independent modules on the basis of genetics, development or function.
View Article and Find Full Text PDFHairless dog breeds show a form of ectodermal dysplasia characterised by a lack of hair and abnormal tooth morphology. This has been attributed to a semi-dominant 7-base-pair duplication in the first exon of the forkhead box I3 gene (FOXI3) shared by all three breeds. Here, we identified this FOXI3 variant in a historical museum sample of pedigreed hairless dog skulls by using ancient DNA extraction and present the associated dental phenotype.
View Article and Find Full Text PDFOBJECTIVE To perform 3-D inverse dynamics analysis of the entire forelimb of healthy dogs during a walk and trot. ANIMALS 5 healthy adult Beagles. PROCEDURES The left forelimb of each dog was instrumented with 19 anatomic markers.
View Article and Find Full Text PDFOwls are known for their outstanding neck mobility: these birds can rotate their heads more than 270°. The anatomical basis of this extraordinary neck rotation ability is not well understood. We used X-ray fluoroscopy of living owls as well as forced neck rotations in dead specimens and computer tomographic (CT) reconstructions to study how the individual cervical joints contribute to head rotation in barn owls (Tyto furcata pratincola).
View Article and Find Full Text PDFAlmost all mammals have seven vertebrae in their cervical spines. This consistency represents one of the most prominent examples of morphological stasis in vertebrae evolution. Hence, the requirements associated with evolutionary modifications of neck length have to be met with a fixed number of vertebrae.
View Article and Find Full Text PDFStudies into the function of structures are crucial for making connections between morphology and behaviour of organisms, but are still rare for the terrestrial Testudinidae. We investigated the kinematics of shoulder girdle and forelimb motion in Hermann's tortoise Testudo hermanni using biplanar X-ray fluoroscopy with a twofold aim: firstly, to understand how the derived shapes of shoulder girdle and carapace together influence rotation of the girdle; and, secondly, to understand how girdle rotation affects forelimb excursion. The total degree of shoulder rotation in the horizontal plane is similar to a species with a less domed shell, but because of the long and nearly vertically oriented scapular prong, shoulder girdle rotation contributes more than 30% to the horizontal arc of the humerus and nearly 40% to the rotational component of step length.
View Article and Find Full Text PDFSpringerplus
March 2016
Purpose: Recently, algorithms were developed to track radiopaque markers in the heart fully automated. However, the methodology did not allow to assign the exact anatomical location to each marker. In this case study we describe the steps from the generation of three-dimensional marker coordinates to quantitative data analyses in an in vivo ovine model.
View Article and Find Full Text PDFDiffering limb proportions in terms of length and mass, as well as differences in mass being concentrated proximally or distally, influence the limb's moment of inertia (MOI), which represents its resistance to being swung. Limb morphology - including limb segment proportions - thus probably has direct relevance for the metabolic cost of swinging the limb during locomotion. However, it remains largely unexplored how differences in limb proportions influence limb kinematics during swing phase.
View Article and Find Full Text PDF