A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Bacterial Surface Traits Influence Digestion by Tetrahymena pyriformis and Alter Opportunity to Escape from Food Vacuoles. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Endosymbiotic interactions are frequently found in nature, especially in the group of protists. Even though many endosymbioses have been studied in detail, little is known about the mechanistic origins and physiological prerequisites of endosymbiont establishment. A logical step towards the development of endocytobiotic associations is evading digestion and escaping from the host's food vacuoles. Surface properties of bacteria are probably involved in these processes. Therefore, we chemically modified the surface of a transformant strain of Escherichia coli prior to feeding to Tetrahymena pyriformis. N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide allows any substance carrying amino- or carboxyl groups to be bound covalently to the bacterial surface by forming a peptide bond, thus, altering its properties biochemically and biophysically in a predictable manner. The effect of different traits on digestion of T. pyriformis was examined by fluorescence and transmission electron microscopy. The efficiency of digestion differs considerably depending on the coupled substances. Alkaline substances inhibit digestion partially, resulting in incomplete digestion and slightly enhanced escape rates. Increasing hydrophobicity leads to much higher escape frequencies. Both results point to possible mechanisms employed by pathogenic bacteria or potential endosymbionts in evading digestion and transmission to the host's cytoplasm.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jeu.12504DOI Listing

Publication Analysis

Top Keywords

bacterial surface
8
tetrahymena pyriformis
8
food vacuoles
8
evading digestion
8
digestion
7
surface traits
4
traits influence
4
influence digestion
4
digestion tetrahymena
4
pyriformis alter
4

Similar Publications