Publications by authors named "Marco Palombo"

The central nervous system (CNS), comprising both the brain and spinal cord, is a complex network of white and gray matter responsible for sensory, motor, and cognitive functions. Advanced diffusion MRI (dMRI) techniques offer a promising mechanism to non-invasively characterize CNS architecture, however, most studies focus on the brain or spinal cord in isolation. Here, we implemented a clinically feasible dMRI protocol on a 3T scanner to simultaneously characterize neurite and soma microstructure of both the brain and spinal cord.

View Article and Find Full Text PDF

(1) Background: Biofeedback and neurofeedback are gaining attention as non-invasive rehabilitation strategies in Parkinson's disease (PD) treatment, aiming to modulate motor and non-motor symptoms through the self-regulation of physiological signals. (2) Objective: This review explores the application of biofeedback techniques, electromyographic (EMG) biofeedback, heart rate variability (HRV) biofeedback, and electroencephalographic (EEG) neurofeedback in PD rehabilitation, analyzing their impacts on motor control, autonomic function, and cognitive performance. (3) Methods: This review critically examined 15 studies investigating the efficacy of electromyographic (EMG), heart rate variability (HRV), and electroencephalographic (EEG) feedback interventions in PD.

View Article and Find Full Text PDF

Neuroanatomical changes to the cortex during adolescence have been well documented using MRI, revealing ongoing cortical thinning and volume loss. Recent advances in MRI hardware and biophysical models of tissue informed by diffusion MRI data hold promise for identifying the cellular changes driving these morphological observations. Using ultra-strong gradient MRI, this study quantifies cortical neurite and soma microstructure in typically developing youth.

View Article and Find Full Text PDF

Diffusion Magnetic Resonance Imaging (dMRI) sensitises the MRI signal to spin motion. This includes Brownian diffusion, but also flow across intricate networks of capillaries. This effect, the intra-voxel incoherent motion (IVIM), enables microvasculature characterisation with dMRI, through metrics such as the vascular signal fraction f or the vascular Apparent Diffusion Coefficient (ADC) D.

View Article and Find Full Text PDF

The central nervous system (CNS), comprised of both the brain and spinal cord, and is a complex network of white and gray matter responsible for sensory, motor, and cognitive functions. Advanced diffusion MRI (dMRI) techniques offer a promising mechanism to non-invasively characterize CNS architecture, however, most studies focus on the brain or spinal cord in isolation. Here, we implemented a clinically feasible dMRI protocol on a 3T scanner to simultaneously characterize neurite and soma microstructure of both the brain and spinal cord.

View Article and Find Full Text PDF

Background: Endometrial cancer (EC) is one of the most common gynecological malignancies and the second most common gynecological malignancy cause of death in women. Heterogeneous tissues with different grades of complexity and different diffusion properties characterize the EC. Several diffusion magnetic resonance imaging (DMRI) protocols have been used to perform a non-invasive and global evaluation of EC for diagnostic and prognostic purposes.

View Article and Find Full Text PDF

Healthy brain aging involves changes in both brain structure and function, including alterations in cellular composition and microstructure across brain regions. Unlike diffusion-weighted MRI (dMRI), diffusion-weighted MR spectroscopy (dMRS) can assess cell-type specific microstructural changes, providing indirect information on both cell composition and microstructure through the quantification and interpretation of metabolites' diffusion properties. This work investigates age-related changes in the higher-order diffusion properties of total N-Acetyl-aspartate (neuronal biomarker), total choline (glial biomarker), and total creatine (both neuronal and glial biomarker) beyond the classical apparent diffusion coefficient in cerebral and cerebellar gray matter of healthy human brain.

View Article and Find Full Text PDF

Background: In multiple sclerosis (MS), susceptibility-weighted imaging (SWI) may reveal white matter lesions (WML) with a paramagnetic rim ("paramagnetic rim lesions" [PRLs]) or diffuse hypointensity ("core-sign lesions"), reflecting different stages of WML evolution.

Objective: Using the soma and neurite density imaging (SANDI) model on diffusion-weighted magnetic resonance imaging (MRI), we characterized microstructural abnormalities of MS PRLs and core-sign lesions and their clinical relevance.

Methods: Forty MS patients and 20 healthy controls (HC) underwent a 3 T brain MRI.

View Article and Find Full Text PDF

This work proposes µGUIDE: a general Bayesian framework to estimate posterior distributions of tissue microstructure parameters from any given biophysical model or signal representation, with exemplar demonstration in diffusion-weighted magnetic resonance imaging. Harnessing a new deep learning architecture for automatic signal feature selection combined with simulation-based inference and efficient sampling of the posterior distributions, µGUIDE bypasses the high computational and time cost of conventional Bayesian approaches and does not rely on acquisition constraints to define model-specific summary statistics. The obtained posterior distributions allow to highlight degeneracies present in the model definition and quantify the uncertainty and ambiguity of the estimated parameters.

View Article and Find Full Text PDF
Article Synopsis
  • The hippocampus, located in the medial temporal lobe, plays a key role in cognitive functions, but its development during childhood and adolescence hasn't been thoroughly studied, focusing mainly on overall volume rather than finer microstructural details.
  • This study analyzed the microstructural changes in the hippocampus across a sample of children and adolescents using advanced diffusion MRI techniques, revealing significant age-related changes in neurite and soma properties, despite no notable changes in overall size or structure.
  • Findings showed an increase in neurite-related MR signals and a decrease in diffusivity, indicating complex developmental patterns in how hippocampal microstructure evolves across different age groups.
View Article and Find Full Text PDF

Diffusion-weighted MRI (dMRI) is universally recommended for the detection and classification of prostate cancer (PCa), with PI-RADS recommendations to acquire b-values of ≥1.4 ms/μm. However, clinical dMRI suffers from a low signal-to-noise ratio (SNR) as the consequence of prolonged echo times (TEs) attributable to the limited gradient power in the range of 40-80 mT/m.

View Article and Find Full Text PDF
Article Synopsis
  • Neuroanatomical changes during adolescence, observed through MRI, show significant cortical thinning and volume loss, but the cellular mechanisms behind these changes have not been clearly understood until now.
  • Recent advancements in MRI technology allowed researchers to analyze the microstructure of the cortex in children and adolescents, revealing that neurite signal increases and soma radius decreases with age, indicating ongoing neural development.
  • The study also found an increase in gene expression related to oligodendrocytes and excitatory neurons, suggesting that myelination processes are crucial for cortical maturation during adolescence and into early adulthood.
View Article and Find Full Text PDF

Introduction: Huntington's disease (HD) is an inherited neurodegenerative disease causing progressive cognitive and motor decline, largely due to basal ganglia (BG) atrophy. Rhythmic training offers promise as therapy to counteract BG-regulated deficits. We have developed HD-DRUM, a tablet-based app to enhance movement synchronisation skills and improve cognitive and motor abilities in people with HD.

View Article and Find Full Text PDF

Pathological data showed focal inflammation and regions of diffuse neuronal loss in the cortex of people with multiple sclerosis (MS). In this work, we applied a novel model ("soma and neurite density imaging (SANDI)") to multishell diffusion-weighted MRI data acquired in healthy subjects and people with multiple sclerosis (pwMS), in order to investigate inflammation and degeneration-related changes in the cortical tissue of pwMS. We aimed to (i) establish whether SANDI is applicable in vivo clinical data; (ii) investigate inflammatory and degenerative changes using SANDI soma fraction (f)-a marker of cellularity-in both cortical lesions and in the normal-appearing-cortex and (iii) correlate SANDI f with clinical and biological measures in pwMS.

View Article and Find Full Text PDF

Water diffusion-weighted MRI is a very powerful tool for probing tissue microstructure, butdisentangling the contribution of compartment-specific structural disorder from cellularrestriction and inter-compartment exchange remains an open challenge. In this work, we usediffusion-weighted MR spectroscopy (dMRS) of water and metabolite as a function of diffusiontimein mouse gray matter to shed light on: i) which of theseconcomitant mechanisms (structural disorder, restriction, and exchange) dominates the MRmeasurements and ii) with which specific signature. We report the diffusion time-dependence ofwater with excellent SNR conditions as provided by dMRS, up to a very long diffusion time (500ms).

View Article and Find Full Text PDF

Biophysical models of diffusion tailored to quantify gray matter microstructure are gathering increasing interest. The two-compartment Neurite EXchange Imaging (NEXI) model has been proposed recently to account for neurites, extra-cellular space, and exchange across the cell membrane. NEXI parameter estimation requires multi-shell multi-diffusion time data and has so far only been implemented experimentally on animal data collected on a preclinical magnetic resonance imaging (MRI) set-up.

View Article and Find Full Text PDF

Multidimensional Magnetic Resonance Imaging (MRI) is a versatile tool for microstructure mapping. We use a diffusion weighted inversion recovery spin echo (DW-IR-SE) sequence with spiral readouts at ultra-strong gradients to acquire a rich diffusion-relaxation data set with sensitivity to myelin water. We reconstruct 1D and 2D spectra with a two-step convex optimization approach and investigate a variety of multidimensional MRI methods, including 1D multi-component relaxometry, 1D multi-component diffusometry, 2D relaxation correlation imaging, and 2D diffusion-relaxation correlation spectroscopic imaging (DR-CSI), in terms of their potential to quantify tissue microstructure, including the myelin water fraction (MWF).

View Article and Find Full Text PDF

Brain cell structure and function reflect neurodevelopment, plasticity, and aging; and changes can help flag pathological processes such as neurodegeneration and neuroinflammation. Accurate and quantitative methods to noninvasively disentangle cellular structural features are needed and are a substantial focus of brain research. Diffusion-weighted MRS (dMRS) gives access to diffusion properties of endogenous intracellular brain metabolites that are preferentially located inside specific brain cell populations.

View Article and Find Full Text PDF

Quantification of microglial activation through morphometric analysis has long been a staple of the neuroimmunologist's toolkit. Microglial morphological phenomics can be conducted through either manual classification or constructing a digital skeleton and extracting morphometric data from it. Multiple open-access and paid software packages are available to generate these skeletons via semi-automated and/or fully automated methods with varying degrees of accuracy.

View Article and Find Full Text PDF

Soma and neurite density image (SANDI) is an advanced diffusion magnetic resonance imaging biophysical signal model devised to probe in vivo microstructural information in the gray matter (GM). This model requires acquisitions that include b values that are at least six times higher than those used in clinical practice. Such high b values are required to disentangle the signal contribution of water diffusing in soma from that diffusing in neurites and extracellular space, while keeping the diffusion time as short as possible to minimize potential bias due to water exchange.

View Article and Find Full Text PDF

The aim of this work was to extend the VERDICT-MRI framework for modelling brain tumours, enabling comprehensive characterisation of both intra- and peritumoural areas with a particular focus on cellular and vascular features. Diffusion MRI data were acquired with multiple b-values (ranging from 50 to 3500 s/mm), diffusion times, and echo times in 21 patients with brain tumours of different types and with a wide range of cellular and vascular features. We fitted a selection of diffusion models that resulted from the combination of different types of intracellular, extracellular, and vascular compartments to the signal.

View Article and Find Full Text PDF

As part of the hypothalamic-pituitary adrenal (HPA) axis, the hypothalamus exerts pivotal influence on metabolic and endocrine homeostasis. With age, these processes are subject to considerable change, resulting in increased prevalence of physical disability and cardiac disorders. Yet, research on the aging human hypothalamus is lacking.

View Article and Find Full Text PDF

The brain has a unique macroscopic waste clearance system, termed the glymphatic system which utilises perivascular tunnels surrounded by astroglia to promote cerebrospinal-interstitial fluid exchange. Rodent studies have demonstrated a marked increase in glymphatic clearance during sleep which has been linked to a sleep-induced expansion of the extracellular space and concomitant reduction in intracellular volume. However, despite being implicated in the pathophysiology of multiple human neurodegenerative disorders, non-invasive techniques for imaging glymphatic clearance in humans are currently limited.

View Article and Find Full Text PDF

This work presents a biophysical model of diffusion and relaxation MRI for prostate called relaxation vascular, extracellular and restricted diffusion for cytometry in tumours (rVERDICT). The model includes compartment-specific relaxation effects providing T1/T2 estimates and microstructural parameters unbiased by relaxation properties of the tissue. 44 men with suspected prostate cancer (PCa) underwent multiparametric MRI (mp-MRI) and VERDICT-MRI followed by targeted biopsy.

View Article and Find Full Text PDF