Publications by authors named "Marc Carreras Sospedra"

Coal generates almost 40% of the world's electricity with 80 countries throughout the world using coal power. An inherent part of this generation is the rail transport of coal in uncovered cars, often up to a mile long. Existing studies document the subsequent increments of PM2.

View Article and Find Full Text PDF

The installation of roofing materials with increased solar reflectance (i.e., "cool roofs") can mitigate the urban heat island effect and reduce energy use.

View Article and Find Full Text PDF

Unlabelled: It is estimated that there is sufficient in-state "technically" recoverable biomass to support nearly 4000 MW of bioelectricity generation capacity. This study assesses the emissions of greenhouse gases and air pollutants and resulting air quality impacts of new and existing bioenergy capacity throughout the state of California, focusing on feedstocks and advanced technologies utilizing biomass resources predominant in each region. The options for bioresources include the production of bioelectricity and renewable natural gas (NG).

View Article and Find Full Text PDF

A large fraction of submicron atmospheric aerosol particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere and the water content of the particles correspondingly changes, these mixed particles can undergo a range of phase transitions, possibly including liquid-liquid phase separation. If liquid-liquid phase separation occurs, the gas-particle partitioning of atmospheric semivolatile organic compounds, the scattering and absorption of solar radiation, and the reactive uptake of gas species on atmospheric particles may be affected, with important implications for climate predictions.

View Article and Find Full Text PDF

Distributed power generation-electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin-has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions.

View Article and Find Full Text PDF

Adoption of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion engine (ICE) vehicles has been proposed as a strategy to reduce criteria pollutant and greenhouse gas (GHG) emissions from the transportation sector and transition to fuel independence. However, it is uncertain (1) to what degree the reduction in criteria pollutants will impact urban air quality, and (2) how the reductions in pollutant emissions and concomitant urban air quality impacts compare to ultralow emission gasoline-powered vehicles projected for a future year (e.g.

View Article and Find Full Text PDF

Emissions from the potential installation of distributed energy resources (DER) in the place of current utility-scale power generators have been introduced into an emissions inventory of the northeastern United States. A methodology for predicting future market penetration of DER that considers economics and emission factors was used to estimate the most likely implementation of DER. The methodology results in spatially and temporally resolved emission profiles of criteria pollutants that are subsequently introduced into a detailed atmospheric chemistry and transport model of the region.

View Article and Find Full Text PDF

This study evaluates air quality model sensitivity to input and to model components. Simulations are performed using the California Institute of Technology (CIT) airshed model. Results show the impacts on ozone (O3) concentration in the South Coast Air Basin (SCAB) of California because of changes in: (1) input data, including meteorological conditions (temperature, UV radiation, mixing height, and wind speed), boundary conditions, and initial conditions (ICs); and (2) model components, including advection solver and chemical mechanism.

View Article and Find Full Text PDF

The incremental secondary organic aerosol reactivity (ISOAR) of a species j is defined as the relative incremental change in secondary organic aerosol (SOA) formed per relative incremental change in the amount of species jemitted. The California Institute of Technology three-dimensional air quality model is used in conjunction with the Caltech Atmospheric Chemistry Mechanism (CACM) and the Model to Predict the Multiphase Partitioning of Organics to calculate spatially and temporally averaged ISOAR values for the South Coast Air Basin of California (SoCAB). The base case SOA concentrations are derived for September 9, 1993.

View Article and Find Full Text PDF