Publications by authors named "Marat Sabirov"

The ability of eukaryotic cells to orchestrate mechanical interactions from the subcellular to the organismal levels is mediated by their cytoskeleton. One of the key components of the eukaryotic cytoskeleton is actin, a highly conserved building block of the actin filaments, which interact with many other proteins and underlie diverse cell structures, necessary for organizing intracellular transport, phagocytosis and cell movement. Many organisms have evolved multiple actin variants, which share similar amino acid sequences but differ more dramatically at the gene level, including the presence and number of introns.

View Article and Find Full Text PDF

Abnormalities in epidermal keratinocyte proliferation are a characteristic feature of a range of dermatological conditions. These include hyperproliferative states in psoriasis and dermatitis as well as hypoproliferative states in chronic wounds. This emphasises the importance of investigating the proliferation kinetics under conditions of healthy skin and identifying the key regulators of epidermal homeostasis, maintenance, and recovery following wound healing.

View Article and Find Full Text PDF

In Brief: Because the study of endometrial stem or progenitor cells has focused more on their potential ability to repair the endometrium, it is necessary to investigate their role in preparing the tissue for embryo implantation. Therefore, we selected CD90 protein as a marker of the population of cells with progenitor properties to study their contribution to hormone-regulated endometrial processes.

Abstract: The endometrium is a dynamic tissue that undergoes significant changes during the reproductive cycle and pregnancy.

View Article and Find Full Text PDF

Hepatic fibrosis remains a significant clinical challenge due to ineffective treatments. 4-methylumbelliferone (4MU), a hyaluronic acid (HA) synthesis inhibitor, has proven safe in phase one clinical trials. In this study, we aimed to ameliorate liver fibrosis by inhibiting HA synthesis.

View Article and Find Full Text PDF

The rete testis (RT) is a region of the mammalian testis that plays an important role in testicular physiology. The RT epithelium consists of cells sharing some well-known gene markers with supporting Sertoli cells (SCs). However, little is known about the differences in gene expression between these two cell populations.

View Article and Find Full Text PDF

Single-cell RNA sequencing (scRNA-seq) is a revolutionary tool for studying the physiology of normal and pathologically altered tissues. This approach provides information about molecular features (gene expression, mutations, chromatin accessibility, etc.) of cells, opens up the possibility to analyze the trajectories/phylogeny of cell differentiation and cell-cell interactions, and helps in discovery of new cell types and previously unexplored processes.

View Article and Find Full Text PDF

4-methylumbelliferone (4MU) is a well-known hyaluronic acid synthesis inhibitor and an approved drug for the treatment of cholestasis. In animal models, 4MU decreases inflammation, reduces fibrosis, and lowers body weight, serum cholesterol, and insulin resistance. It also inhibits tumor progression and metastasis.

View Article and Find Full Text PDF

Most of the known Drosophila architectural proteins interact with an important cofactor, CP190, that contains three domains (BTB, M, and D) that are involved in protein-protein interactions. The highly conserved N-terminal CP190 BTB domain forms a stable homodimer that interacts with unstructured regions in the three best-characterized architectural proteins: dCTCF, Su(Hw), and Pita. Here, we identified two new CP190 partners, CG4730 and CG31365, that interact with the BTB domain.

View Article and Find Full Text PDF

Background: Pita is required for Drosophila development and binds specifically to a long motif in active promoters and insulators. Pita belongs to the Drosophila family of zinc-finger architectural proteins, which also includes Su(Hw) and the conserved among higher eukaryotes CTCF. The architectural proteins maintain the active state of regulatory elements and the long-distance interactions between them.

View Article and Find Full Text PDF

Identification of gene expression traits unique to the human brain sheds light on the molecular mechanisms underlying human evolution. Here, we searched for uniquely human gene expression traits by analyzing 422 brain samples from humans, chimpanzees, bonobos, and macaques representing 33 anatomical regions, as well as 88,047 cell nuclei composing three of these regions. Among 33 regions, cerebral cortex areas, hypothalamus, and cerebellar gray and white matter evolved rapidly in humans.

View Article and Find Full Text PDF

Boundaries in the bithorax complex (BX-C) enable the regulatory domains that drive parasegment-specific expression of the three genes to function autonomously. The four regulatory domains (, , , and ) that control the expression of the () gene are located downstream of the transcription unit, and are delimited by the , , , and boundaries. These boundaries function to block cross talk between neighboring regulatory domains.

View Article and Find Full Text PDF

Boundaries in the complex (BX-C) delimit autonomous regulatory domains that drive parasegment-specific expression of the genes , and The boundary is located between the and domains and has two key functions: blocking cross-talk between these domains and at the same time promoting communication (boundary bypass) between and the promoter. Using a replacement strategy, we found that multimerized binding sites for the architectural proteins Pita, Su(Hw), and dCTCF function as conventional insulators and block cross-talk between the and domains; however, they lack bypass activity, and is unable to regulate Here we show that an ∼200-bp sequence of dHS1 from the boundary rescues the bypass defects of these multimerized binding sites. The dHS1 sequence is bound in embryos by a large multiprotein complex, Late Boundary Complex (LBC), that contains the zinc finger proteins CLAMP and GAF.

View Article and Find Full Text PDF

Expression of the three bithorax complex homeotic genes is orchestrated by nine parasegment-specific regulatory domains. Autonomy of each domain is conferred by boundary elements (insulators). Here, we have used an in situ replacement strategy to reanalyze the sequences required for the functioning of one of the best-characterized fly boundaries, Fab-7.

View Article and Find Full Text PDF

Biological development depends on the coordinated expression of genes in time and space. Developmental genes have extensive cis-regulatory regions which control their expression. These regions are organized in a modular manner, with different modules controlling expression at different times and locations.

View Article and Find Full Text PDF

Gene recruitment or cooption occurs when a gene, which may be part of an existing gene regulatory network (GRN), comes under the control of a new regulatory system. Such re-arrangement of pre-existing networks is likely more common for increasing genomic complexity than the creation of new genes. Using evolutionary computations (EC), we investigate how cooption affects the evolvability, outgrowth and robustness of GRNs.

View Article and Find Full Text PDF