Publications by authors named "Erdem B Dashinimaev"

Gene transfection is a fundamental technique in the fields of biological research and therapeutic innovation. Due to their biocompatibility and membrane-mimetic properties, lipid vectors serve as essential tools in transfection. The successful delivery of genetic material into the cytoplasm is contingent upon the fusion of the vector and cellular membranes, which enables hydrophilic polynucleic acids to traverse the hydrophobic barriers of two intervening membranes.

View Article and Find Full Text PDF

Direct pro-neural reprogramming is a conversion of differentiated somatic cells to neural cells without an intermediate pluripotency stage. It is usually achieved via ectopic expression (EE) of certain transcription factors (TFs) or other reprogramming factors (RFs). Determining the transcriptional changes (TCs) caused by particular RFs in a given cell line enables an informed approach to reprogramming initiation.

View Article and Find Full Text PDF

The rete testis (RT) is a region of the mammalian testis that plays an important role in testicular physiology. The RT epithelium consists of cells sharing some well-known gene markers with supporting Sertoli cells (SCs). However, little is known about the differences in gene expression between these two cell populations.

View Article and Find Full Text PDF

Trisomy is the presence of one extra copy of an entire chromosome or its part in a cell nucleus. In humans, autosomal trisomies are associated with severe developmental abnormalities leading to embryonic lethality, miscarriage or pronounced deviations of various organs and systems at birth. Trisomies are characterized by alterations in gene expression level, not exclusively on the trisomic chromosome, but throughout the genome.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma (ccRCC) accounts for 80-90% of kidney cancers worldwide. Small C-terminal domain phosphatases CTDSP1, CTDSP2, and CTDSPL (also known as SCP1, 2, 3) are involved in the regulation of several important pathways associated with carcinogenesis. In various cancer types, these phosphatases may demonstrate either antitumor or oncogenic activity.

View Article and Find Full Text PDF

Introduction: Culturing of human neural stem cells (NSCs) derived from induced pluripotent stem cells (iPSC) is a promising area of research, as these cells have the potential to treat a wide range of neurological, neurodegenerative and psychiatric diseases. However, the development of optimal protocols for the production and long-term culturing of NSCs remains a challenge. One of the most important aspects of this problem is to determine the stability of NSCs during long-term in vitro passaging.

View Article and Find Full Text PDF

Sertoli cells are key somatic cells in the testis that form seminiferous tubules and support spermatogenesis. The isolation of pure Sertoli cells is important for their study. However, it is a difficult effort because of the close association of Sertoli cells with peritubular myoid cells surrounding seminiferous tubules.

View Article and Find Full Text PDF

Nuclear noncoding RNAs (ncRNAs) are key regulators of gene expression and chromatin organization. The progress in studying nuclear ncRNAs depends on the ability to identify the genome-wide spectrum of contacts of ncRNAs with chromatin. To address this question, a panel of RNA-DNA proximity ligation techniques has been developed.

View Article and Find Full Text PDF

A major problem in psychiatric research is a deficit of relevant cell material of neuronal origin, especially in large quantities from living individuals. One of the promising options is cells from the olfactory neuroepithelium, which contains neuronal progenitors that ensure the regeneration of olfactory receptors. These cells are easy to obtain with nasal biopsies and it is possible to grow and cultivate them in vitro.

View Article and Find Full Text PDF

The recessive form of dystrophic epidermolysis bullosa (RDEB) is a crippling disease caused by impairments in the junctions of the dermis and the basement membrane of the epidermis. Using ectopic expression of hTERT/hTERT + BMI-1 in primary cells, we developed expansible cultures of RDEB fibroblasts and keratinocytes. We showed that they display the properties of their founders, including morphology, contraction ability and expression of the respective specific markers including reduced secretion of type VII collagen (C7).

View Article and Find Full Text PDF

The fundamental question about the functionality of in vitro derived human primordial germ cell-like cells remains unanswered, despite ongoing research in this area. Attempts have been made to imitate the differentiation of human primordial germ cells (hPGCs) and meiocytes in vitro from human pluripotent stem cells (hPSCs). A defined system for developing human haploid cells in vitro is the challenge that scientists face to advance the knowledge of human germ cell development.

View Article and Find Full Text PDF

Neural stem cells (NSCs) provide promising approaches for investigating embryonic neurogenesis, modeling of the pathogenesis of diseases of the central nervous system, and for designing drug-screening systems. Such cells also have an application in regenerative medicine. The most convenient and acceptable source of NSCs is pluripotent stem cells (embryonic stem cells or induced pluripotent stem cells).

View Article and Find Full Text PDF

The speed of reprogramming technologies evolution is rising dramatically in modern science. Both the scientific community and health workers depend on such developments due to the lack of safe autogenic cells and tissues for regenerative medicine, genome editing tools and reliable screening techniques. To perform experiments efficiently and to propel the fundamental science it is important to keep up with novel modifications and techniques that are being discovered almost weekly.

View Article and Find Full Text PDF

The initiation of protein synthesis in bacteria is ruled by three canonical factors: IF1, IF2, and IF3. This system persists in human mitochondria; however, it functions in a rather different way due to specialization and adaptation to the organellar micro-environment. We focused on human mitochondrial IF3, which was earlier studied in vitro, but no knock-out cellular models have been published up to date.

View Article and Find Full Text PDF

Background: The regeneration of the peripheral nerves after injuries is still a challenging fundamental and clinical problem. The cell therapy and nerve guide conduit construction are promising modern approaches. Nowadays, different sources of cells for transplantation are available.

View Article and Find Full Text PDF

Non-Small Cell Lung Cancer (NSCLC) is responsible for the majority of deaths caused by cancer. Small C-terminal domain (CTD) phosphatases (SCP), CTDSP1, CTDSP2 and CTDSPL (CTDSPs) belong to SCP/CTDSP subfamily and are involved in many vital cellular processes and tumorigenesis. High similarity of their structures suggests similar functions.

View Article and Find Full Text PDF

Induced pluripotent stem cells (iPSC) are a promising tool for personalized cell therapy, in particular, in the field of dermatology. Metabolic plasticity of iPSC are not completely understood due to the fact that iPSC have a mixed mitochondrial phenotype, which still resembles that of somatic cells. In this study we investigated the metabolic changes in iPSC undergoing differentiation in two directions, dermal and epidermal, using two-photon fluorescence microscopy combined with FLIM.

View Article and Find Full Text PDF

People with Down syndrome (DS) are at high risk of developing pathology similar to Alzheimer's disease (AD). Modeling of this pathology in vitro may be useful for studying this phenomenon. In this study, we analyzed three different cultures of neural cells carrying trisomy of chromosome 21, which were generated by directed differentiation from induced pluripotent stem cells (iPS cells).

View Article and Find Full Text PDF