Tumor suppressor properties of the small C-terminal domain phosphatases in non-small cell lung cancer.

Biosci Rep

Laboratory of Postgenomic Research, Laboratory of Structural and Functional Genomics, Laboratory of Cellular Basics of Cancer Development, Laboratory of DNA-Protein Interactions, Laboratory of Protein Conformational Polymorphism in Health and Disease, Center for Precision Genome Editing and Genetic

Published: December 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Non-Small Cell Lung Cancer (NSCLC) is responsible for the majority of deaths caused by cancer. Small C-terminal domain (CTD) phosphatases (SCP), CTDSP1, CTDSP2 and CTDSPL (CTDSPs) belong to SCP/CTDSP subfamily and are involved in many vital cellular processes and tumorigenesis. High similarity of their structures suggests similar functions. However their role in NSCLC remains insufficiently understood. For the first time we revealed the suppressor function of CTDSPs leading to a significant growth slowdown and senescence of A549 lung adenocarcinoma (ADC) cells in vitro. Their tumor-suppressive activity can be realized through increasing the proportion of the active form of Rb protein dephosphorylated at Ser807/811, Ser780, and Ser795 (P<0.05) thereby negatively regulating cancer cell proliferation. Moreover, we observed that a frequent (84%, 39/46) and highly concordant (Spearman's rank correlation coefficient (rs) = 0.53-0.62, P≤0.01) down-regulation of CTDSPs and RB1 is characteristic of primary NSCLC samples (n=46). A clear difference in their mRNA levels was found between lung ADCs with and without lymph node metastases, but not in squamous cell carcinomas (SCCs) (P≤0.05). Based on The Cancer Genome Atlas (TCGA) data and the results obtained using the CrossHub tool, we suggest that the well-known oncogenic cluster miR-96/182/183 could be a common expression regulator of CTDSPs. Indeed, according to our qPCR, the expression of CTDSPs negatively correlates with these miRs, but positively correlates with their intronic miR-26a/b. Our results reflect functional association of CTDSP1, CTDSP2, and CTDSPL, expand knowledge about their suppressor properties through Rb dephosphorylation and provide new insights into the regulation of NSCLC growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6911153PMC
http://dx.doi.org/10.1042/BSR20193094DOI Listing

Publication Analysis

Top Keywords

small c-terminal
8
c-terminal domain
8
non-small cell
8
cell lung
8
lung cancer
8
tumor suppressor
4
suppressor properties
4
properties small
4
domain phosphatases
4
phosphatases non-small
4

Similar Publications

Among the different types of HIV-1 maturation inhibitors, those that stabilize the junction between the capsid protein C-terminal domain (CA) and the spacer peptide 1 (SP1) within the immature Gag lattice are promising candidates for antiretroviral therapies. Here, we report the atomic-resolution structure of CA-SP1 assemblies with the small-molecule maturation inhibitor PF-46396 and the assembly cofactor inositol hexakisphosphate (IP6), determined by magic angle spinning (MAS) NMR spectroscopy. Our results reveal that although the two PF-46396 enantiomers exhibit distinct binding modes, they both possess similar anti-HIV potency.

View Article and Find Full Text PDF

Effect of C-Terminal Residue on the Phase Behavior and Properties of β-Sheet Forming Self-Assembling Peptide Hydrogels.

Biomacromolecules

September 2025

Division of Pharmacy and Optometry, Manchester Institute of Biotechnology, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.

This study investigates how hydrophobic and hydrophilic modifications at the C-terminus of the base peptide, KFEFEFKFK (KbpK), affect the hydrogel macroscopic properties. By the incorporation of phenylalanine (F, hydrophobic) and lysine (K, hydrophilic) residues, four variants, KbpK-K, KbpK-F, KbpK-KF, and KbpK-FK, were designed and evaluated. pH-concentration phase diagrams and Fourier transform infrared confirmed clear links showing how peptide hydrophobicity and charge influence β-sheet formation and macroscopic phase behavior.

View Article and Find Full Text PDF

Glycocins are a growing family of ribosomally synthesized and posttranslationally modified peptides (RiPPs) that are O- and/or S-glycosylated. Using a sequence similarity network of putative glycosyltransferases, the thg biosynthetic gene cluster was identified in the genome of Thermoanaerobacterium thermosaccharolyticum. Heterologous expression in Escherichia coli showed that the glycosyltransferase (ThgS) encoded in the biosynthetic gene cluster (BGC) adds N-acetyl-glucosamine (GlcNAc) to Ser and Cys residues of ThgA.

View Article and Find Full Text PDF

Introduction: Amyloid-beta-targeting monoclonal antibodies (mAbs) for Alzheimer's disease frequently induce amyloid-related imaging abnormalities with hemorrhage (ARIA-H), yet systematic comparisons of ARIA-H incidence across therapeutic agents remain limited. Post-approval research prioritizes dosing over mechanism, leaving unresolved whether ARIA-H variations originate from intrinsic mAb properties. We address two gaps: comparative ARIA-H risk stratification among clinically available/investigational mAbs, and elucidation of structural/functional features influencing ARIA-H susceptibility.

View Article and Find Full Text PDF

Biochemical characterization of a flavodiiron protein from bird parasite Histomonas meleagridis: superoxide as a reaction intermediate.

J Biol Chem

September 2025

Laboratory of Redox Biology and Metabolism, Scintillon Institute, San Diego, CA; Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA. Electronic address:

Histomonas meleagridis is a parasitic protozoan which causes histomoniasis (blackhead disease) in a wide range of birds, including domesticated chickens and turkeys, representing a significant health problem in avian veterinary medicine. Despite being classified as an anaerobic parasite, H. meleagridis can survive transient exposure to oxygen while little is known about the mechanisms that allow this organism to cope with exposure to varying oxygen levels.

View Article and Find Full Text PDF