Asthma is the most prevalent chronic inflammatory lung disease in adolescents and young adults, characterized by persistent airway inflammation and remodeling. Increasing evidence indicates that activated lung macrophages play a significant role in the initiation, intensity, progression, and resolution of allergic airway inflammation. However, the underlying mechanisms regulating macrophage-mediated inflammation in asthma remain incompletely understood.
View Article and Find Full Text PDFSpecialized pro-resolving mediators (SPMs), including lipoxins derived from arachidonic acid and resolvins, protectins, and maresins derived from docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), orchestrate the active resolution of inflammation. These SPMs are biosynthesized through the coordinated interaction of various cells in a process known as transcellular biosynthesis, involving the sequential action of cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX), 12-lipoxygenase (12-LOX), and/or 15-lipoxygenase (15-LOX) enzymes. Additionally, Aspirin-triggered Resolvins are produced by acetylated COX-2, along with various lipoxygenases.
View Article and Find Full Text PDFExtracellular vesicles mediate intercellular communication by transporting biologically active macromolecules. Our prior studies have demonstrated that the nuclear factor of activated T cell cytoplasmic member 3 (NFATc3) is activated in mouse pulmonary macrophages in response to lipopolysaccharide (LPS). Inhibition of NFATc3 activation by a novel cell-permeable calcineurin peptide inhibitor CNI103 mitigated the development of acute lung injury (ALI) in LPS-treated mice.
View Article and Find Full Text PDFOur previous research demonstrated that PU.1 regulates expression of the genes involved in inflammation in macrophages. Selective knockdown of PU.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
November 2023
The prevalence of electronic cigarette (EC) use among adult with asthma has continued to increase over time, in part due to the belief of being less harmful than smoking. However, the extent of their toxicity and the involved mechanisms contributing to the deleterious impact of EC exposure on patients with preexisting asthma have not been delineated. In the present project, we tested the hypothesis that EC use contributes to respiratory damage and worsening inflammation in the lungs of patients with asthma.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a progressive and highly lethal inflammatory interstitial lung disease characterized by aberrant extracellular matrix deposition. Macrophage activation by cytokines released from repetitively injured alveolar epithelial cells regulates the inflammatory response, tissue remodeling, and fibrosis throughout various phases of IPF. Our previous studies demonstrate that nuclear factor of activated T cells cytoplasmic member 3 (NFATc3) regulates a wide array of macrophage genes during acute lung injury pathogenesis.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a progressive and highly lethal inflammatory interstitial lung disease characterized by aberrant extracellular matrix deposition. Macrophage activation by cytokines released from repetitively injured alveolar epithelial cells regulates the inflammatory response, tissue remodeling, and fibrosis throughout various phases of IPF. Our previous studies demonstrate that nuclear factor of activated T cells cytoplasmic member 3 (NFATc3) regulates a wide array of macrophage genes during acute lung injury pathogenesis.
View Article and Find Full Text PDFAsthma is phenotypically heterogeneous with several distinctive pathological mechanistic pathways. Previous studies indicate that neutrophilic asthma has a poor response to standard asthma treatments comprising inhaled corticosteroids. Therefore, it is important to identify critical factors that contribute to increased numbers of neutrophils in asthma patients whose symptoms are poorly controlled by conventional therapy.
View Article and Find Full Text PDFIntroduction: Survivors of sepsis exhibit persistent immunosuppression. Epigenetic events may be responsible for some of these immunosuppressive changes. During sepsis circulating exosomes contain large quantities of DNA methyltransferase (DNMT) mRNAs.
View Article and Find Full Text PDFEmerging data support the pivotal role of extracellular vesicles (EVs) in normal cellular physiology and disease conditions. However, despite their abundance, there is much less information about the lipid mediators carried in EVs, especially in the context of acute lung injury (ALI). Our data demonstrate that C57BL/6 mice subjected to intranasal Escherichia coli lipopolysaccharide (LPS)-induced ALI release, a higher number of EVs into the alveolar space, compared to saline-treated controls.
View Article and Find Full Text PDFVessel Plus
September 2020
The vascular endothelium is a vital component in maintaining the structure and function of blood vessels. The endothelial cells (ECs) mediate vital regulatory functions such as the proliferation of cells, permeability of various tissue membranes, and exchange of gases, thrombolysis, blood flow, and homeostasis. The vascular endothelium also regulates inflammation and immune cell trafficking, and ECs serve as a replicative niche for many bacterial, viral, and protozoan infectious diseases.
View Article and Find Full Text PDFAcute respiratory distress syndrome (ARDS) is an inflammatory lung disease with a high morbidity and mortality rate, for which no pharmacologic treatment is currently available. Our previous studies discovered that a pivotal step in the disease process is the activation of the nuclear factor of activated T cells (NFAT) c3 in lung macrophages, suggesting that inhibitors against the upstream protein phosphatase calcineurin should be effective for prevention/treatment of ARDS. Herein, we report the development of a highly potent, cell-permeable, and metabolically stable peptidyl inhibitor, CNI103, which selectively blocks the interaction between calcineurin and NFATc3, through computational and medicinal chemistry.
View Article and Find Full Text PDFPulmonary macrophages play a critical role in the recognition of pathogens, initiation of host defense via inflammation, clearance of pathogens from the airways, and resolution of inflammation. Recently, we have shown a pivotal role for the nuclear factor of activated T-cell cytoplasmic member 3 (NFATc3) transcription factor in modulating pulmonary macrophage function in LPS-induced acute lung injury (ALI) pathogenesis. Although the NFATc proteins are activated primarily by calcineurin-dependent dephosphorylation, here we show that LPS induces posttranslational modification of NFATc3 by polyADP-ribose polymerase 1 (PARP-1)-mediated polyADP-ribosylation.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis is a deadly disease characterized by excessive extracellular matrix deposition in the lungs, resulting in decreased pulmonary function. Although epithelial cells and fibroblasts have long been the focus of idiopathic pulmonary fibrosis research, the role of various subpopulations of macrophages in promoting a fibrotic response is an emerging target. Healthy lungs are composed of two macrophage populations, tissue-resident alveolar macrophages and interstitial macrophages, which help to maintain homeostasis.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
May 2020
The incidence of asthma has increased from 5.5% to near 8% of the population, which is a major health concern. The hallmarks of asthma include eosinophilic airway inflammation that is associated with chronic airway remodeling.
View Article and Find Full Text PDFJCI Insight
February 2019
Allergic eosinophilic asthma is a chronic condition causing airway remodeling resulting in lung dysfunction. We observed that expression of sirtuin 2 (Sirt2), a histone deacetylase, regulates the recruitment of eosinophils after sensitization and challenge with a triple antigen: dust mite, ragweed, and Aspergillus fumigatus (DRA). Our data demonstrate that IL-4 regulates the expression of Sirt2 isoform 3/5.
View Article and Find Full Text PDFBackground: The pathogenesis of asthma and airway obstruction is the result of an abnormal response to different environmental exposures. The scientific premise of our study was based on the finding that FoxO1 expression is increased in lung macrophages of mice after allergen exposure and human asthmatic patients. Macrophages are capable of switching from one functional phenotype to another, and it is important to understand the mechanisms involved in the transformation of macrophages and how their cellular function affects the peribronchial stromal microenvironment.
View Article and Find Full Text PDFSpecific therapies targeting cellular and molecular events of sepsis induced Acute Lung Injury (ALI) pathogenesis are lacking. We have reported a pivotal role for Nuclear Factors of Activated T cells (NFATc3) in regulating macrophage phenotype during sepsis induced ALI and subsequent studies demonstrate that NFATc3 transcriptionally regulates macrophage CCR2 and TNFα gene expression. Mouse pulmonary microvascular endothelial cell monolayer maintained a tighter barrier function when co-cultured with LPS stimulated NFATc3 deficient macrophages whereas wild type macrophages caused leaky monolayer barrier.
View Article and Find Full Text PDFBiochem Mol Biol J
August 2016
Hemozoin (Hz) is released from ruptured erythrocytes during malaria infection caused by sp., in addition the malaria infected individuals are prone to bacterial sepsis. The molecular interactions between Hz, bacterial components and macrophages remains poorly investigated.
View Article and Find Full Text PDFInflammatory monocyte and tissue macrophages influence the initiation, progression, and resolution of type 2 immune responses, and alveolar macrophages are the most prevalent immune-effector cells in the lung. While we were characterizing the M1- or M2-like macrophages in type 2 allergic inflammation, we discovered that FoxO1 is highly expressed in alternatively activated macrophages. Although several studies have been focused on the fundamental role of FoxOs in hematopoietic and immune cells, the exact role that FoxO1 plays in allergic asthmatic inflammation in activated macrophages has not been investigated.
View Article and Find Full Text PDFJ Mol Cell Biol
December 2015
The transcription factor PU.1 is involved in regulation of macrophage differentiation and maturation. However, the role of PU.
View Article and Find Full Text PDFMacrophages are a heterogeneous population of immune cells that are essential for the initiation and containment inflammation. There are 2 well-established populations of inflammatory macrophages: classically activated M1 and alternatively activated M2 macrophages. The FoxO family of transcription factors plays key roles in a number of cellular processes, including cell growth, metabolism, survival, and inflammation.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
June 2015
Although alveolar macrophages (AMs) from patients with asthma are known to be functionally different from those of healthy individuals, the mechanism by which this transformation occurs has not been fully elucidated in asthma. The goal of this study was to define the mechanisms that control AM phenotypic and functional transformation in response to acute allergic airway inflammation. The phenotype and functional characteristics of AMs obtained from human subjects with asthma after subsegmental bronchoprovocation with allergen was studied.
View Article and Find Full Text PDFThe role of the transcription factor nuclear factor of activated T cells (NFAT) was initially identified in T and B cell gene expression, but its role in regulating gene expression in macrophages during sepsis is not known. Our data show that NFATc3 regulates expression of inducible nitric oxide synthase (iNOS) in macrophages stimulated with lipopolysaccharide. Selective inhibition of NFAT by cyclosporine A and a competitive peptide inhibitor 11R-VIVIT inhibited endotoxin-induced expression of iNOS and nitric oxide (NO) release.
View Article and Find Full Text PDF