Publications by authors named "Luisa Averdunk"

BCL11B is a Cys2-His2 zinc-finger (C2H2-ZnF) domain-containing, DNA-binding, transcription factor with established roles in the development of various organs and tissues, primarily the immune and nervous systems. BCL11B germline variants have been associated with a variety of developmental syndromes. However, genotype-phenotype correlations along with pathophysiologic mechanisms of selected variants mostly remain elusive.

View Article and Find Full Text PDF

Epilepsy is a common neurological condition that arises from dysfunctional neuronal circuit control due to either acquired or innate disorders. Autophagy is an essential neuronal housekeeping mechanism, which causes severe proteotoxic stress when impaired. Autophagy impairment has been associated to epileptogenesis through a variety of molecular mechanisms.

View Article and Find Full Text PDF
Article Synopsis
  • * A 3-year study, TRANSLATE NAMSE, analyzed data from 1,577 patients, revealing that 32% received molecular diagnoses involving 370 distinct causes, primarily uncommon.
  • * The research showed that combining next-generation sequencing with advanced phenotyping methods improved diagnostic efficiency and helped identify new genotype-phenotype associations, particularly in neurodevelopmental disorders.
View Article and Find Full Text PDF
Article Synopsis
  • Dysmorphologists face challenges due to the diverse phenotypic variability of human faces, particularly when using Next-Generation Phenotyping (NGP) tools, which are often trained on limited data.
  • To address this, the GestaltMatcher Database (GMDB) was created, compiling over 10,980 facial images from various global populations, significantly improving the representation of underrepresented ancestries, especially African and Asian patients.
  • The study found that incorporating data from non-European patients enhanced NGP accuracy by over 11% without compromising performance for European patients, highlighting the importance of diverse datasets in identifying genetic disorders.
View Article and Find Full Text PDF

Bryant-Li-Bhoj syndrome (BLBS), which became OMIM-classified in 2022 (OMIM: 619720, 619721), is caused by germline variants in the two genes that encode histone H3.3 (H3-3A/H3F3A and H3-3B/H3F3B) [1-4]. This syndrome is characterized by developmental delay/intellectual disability, craniofacial anomalies, hyper/hypotonia, and abnormal neuroimaging [1, 5].

View Article and Find Full Text PDF

Classical homocystinuria is caused by pathogenic variants in the CBS gene leading to a deficiency of the vitamin B6-dependent enzyme cystathionine beta synthase. The disease is typically associated with high blood homocysteine concentrations. Clinical features include developmental delay/intellectual disability, psychiatric problems, thromboembolism, lens dislocation, and marfanoid habitus.

View Article and Find Full Text PDF
Article Synopsis
  • The significant phenotypic variability of human faces complicates the work of dysmorphologists by challenging Next-Generation Phenotyping (NGP) tools, especially when analyzing patients from diverse genetic backgrounds.
  • The research established the GestaltMatcher Database (GMDB), which includes over 10,000 facial images from patients with rare genetic disorders worldwide, striving to improve representation of underrepresented populations, particularly Asian and African patients.
  • The analysis showed that incorporating data from non-European patients enhanced the accuracy of NGP in diagnosing facial disorders without negatively affecting performance on European patients, emphasizing the need for more diverse datasets in medical genetics.
View Article and Find Full Text PDF

Purpose: Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) regulates cell growth in response to nutritional status. Central to the mTORC1 function is the Rag-GTPase heterodimer. One component of the Rag heterodimer is RagC (Ras-related GTP-binding protein C), which is encoded by the RRAGC gene.

View Article and Find Full Text PDF
Article Synopsis
  • Rothmund-Thomson syndrome (RTS) is a disorder marked by symptoms like skin changes, short stature, and an increased risk of cancer, primarily linked to mutations in the RECQL4 and ANAPC1 genes; this study identifies RTS-like characteristics in five individuals with CRIPT gene variants.
  • The research method involved comparing these individuals with known RTS cases through clinical assessments, photographic analysis, and skin biopsy studies, revealing significant similarities and additional neurological issues like developmental delays and seizures in CRIPT patients.
  • Findings indicated CRIPT mutations contribute to an RTS-like condition highlighting increased cellular senescence, suggesting overlapping biological mechanisms between CRIPT and RECQL4-related syndromes.
View Article and Find Full Text PDF

Protein translation is an essential cellular process and dysfunctional protein translation causes various neurodevelopmental disorders. The eukaryotic translation elongation factor 1A (eEF1A) delivers aminoacyl-tRNA to the ribosome, while the eEF1B complex acts as a guanine exchange factor (GEF) of GTP for GDP indirectly catalyzing the release of eEF1A from the ribosome. The gene EEF1D encodes the eEF1Bδ subunit of the eEF1B complex.

View Article and Find Full Text PDF

Introduction: Arthrogryposis is characterized by the presence of multiple contractures at birth and can be caused by pathogenic variants in (). Exons and variants that are not expressed in one of the three major isoforms of titin are referred to as "metatranscript-only" and have been considered to be only expressed during fetal development. Recently, the metatranscript-only variant (c.

View Article and Find Full Text PDF

Many monogenic disorders cause a characteristic facial morphology. Artificial intelligence can support physicians in recognizing these patterns by associating facial phenotypes with the underlying syndrome through training on thousands of patient photographs. However, this 'supervised' approach means that diagnoses are only possible if the disorder was part of the training set.

View Article and Find Full Text PDF

Background: Fetal akinesia (FA) results in variable clinical presentations and has been associated with more than 166 different disease loci. However, the underlying molecular cause remains unclear in many individuals. We aimed to further define the set of genes involved.

View Article and Find Full Text PDF

Pathogenic variants in aminoacyl-tRNA synthetases (ARS1) cause a diverse spectrum of autosomal recessive disorders. Tyrosyl tRNA synthetase (TyrRS) is encoded by YARS1 (cytosolic, OMIM*603,623) and is responsible of coupling tyrosine to its specific tRNA. Next to the enzymatic domain, TyrRS has two additional functional domains (N-Terminal TyrRS and C-terminal EMAP-II-like domain) which confer cytokine-like functions.

View Article and Find Full Text PDF
Article Synopsis
  • Subcellular membranes are rich in dolichol, important for protein glycosylation, but its exact role in organelle function and the endosomal-lysosomal pathway is still unclear.
  • Variants in the DHDDS gene, which is essential for dolichol production, are linked to a form of retinitis pigmentosa and various neurodevelopmental disorders, causing symptoms like epilepsy and movement issues in affected patients.
  • Clinical studies showed that patients with DHDDS mutations experienced neurological decline, cognitive issues, and changes in their lysosomal function, suggesting that these variants primarily affect the enzyme's active site and disrupt normal cell processes.
View Article and Find Full Text PDF

Background: Macrophage Migration Inhibitory Factor (MIF) is highly elevated after cardiac surgery and impacts the postoperative inflammation. The aim of this study was to analyze whether the polymorphisms CATT (rs5844572/rs3063368,"-794") and G>C single-nucleotide polymorphism (rs755622,-173) in the gene promoter are related to postoperative outcome.

Methods: In 1116 patients undergoing cardiac surgery, the gene polymorphisms were analyzed and serum MIF was measured by ELISA in 100 patients.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is a relevant complication following thoracoabdominal aortic aneurysm repair (TAAA). Biomarkers, such as secretory leucocyte peptidase inhibitor (SLPI), may enable a more accurate diagnosis. In this study, we tested if SLPI measured in serum is an appropriate biomarker of AKI after TAAA repair.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is one of the most frequent complications after cardiac surgery and is associated with poor outcomes. Biomarkers of AKI are crucial for the early diagnosis of this condition. Secretory leukocyte protease inhibitor (SLPI) is an alarm anti-protease that has been implicated in the pathogenesis of AKI but has not yet been studied as a diagnostic biomarker of AKI.

View Article and Find Full Text PDF

Background Although macrophage migration inhibitory factor ( MIF ) has been demonstrated to mediate cardioprotection in ischemia/reperfusion injury and antagonize fibrotic effects through its receptor, CD 74, the function of the soluble CD 74 receptor ectodomain ( sCD 74) and its interaction with circulating MIF have not been explored in cardiac disease. Methods and Results Cardiac fibroblasts were isolated from hearts of neonatal mice and differentiated into myofibroblasts. Co-treatment with recombinant MIF and sCD 74 induced cell death ( P<0.

View Article and Find Full Text PDF

Acute kidney injury (AKI) represents the most frequent complication after cardiac surgery. Macrophage migration inhibitory factor (MIF) is a stress-regulating cytokine that was shown to protect the heart from myocardial ischemia-reperfusion injury, but its role in the pathogenesis of AKI remains unknown. In an observational study, serum and urinary MIF was quantified in 60 patients scheduled for elective conventional cardiac surgery with the use of cardiopulmonary bypass.

View Article and Find Full Text PDF