Publications by authors named "Margot R F Reijnders"

Article Synopsis
  • Researchers identified bi-allelic disruptive variants as the cause of autosomal recessive intellectual developmental disorder type 65, while dominant variants are harder to link to specific traits due to their presence in unaffected individuals.
  • The study involved a retrospective analysis of 21 individuals with likely pathogenic variants, focusing on clinical information and molecular data from their families.
  • Key findings revealed that those with dominant disruptive variants exhibited more developmental and behavioral problems, while individuals with dominant missense variants had a higher occurrence of renal and skin anomalies, enhancing the understanding of the related neurodevelopmental disorder.
View Article and Find Full Text PDF

Cyclin D2 (CCND2) stabilization underpins a range of macrocephaly-associated disorders through mutation of CCND2 or activating mutations in upstream genes encoding PI3K-AKT pathway components. Here, we describe three individuals with overlapping macrocephaly-associated phenotypes who carry the same recurrent de novo c.179G>A (p.

View Article and Find Full Text PDF

Purpose: Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) regulates cell growth in response to nutritional status. Central to the mTORC1 function is the Rag-GTPase heterodimer. One component of the Rag heterodimer is RagC (Ras-related GTP-binding protein C), which is encoded by the RRAGC gene.

View Article and Find Full Text PDF
Article Synopsis
  • ARGONAUTE-2 (AGO2) and its associated miRNAs form the RNA-induced silencing complex (RISC), which is vital for controlling mRNA translation and degradation in the RNA interference pathway.
  • Researchers discovered 13 mutations in the AGO2 gene among 21 patients with neurological development issues, leading to a breakdown in shRNA-mediated silencing.
  • The mutations caused problems in RISC formation and affected AGO2's interaction with mRNA, highlighting the significance of proper gene expression regulation for human brain development.
View Article and Find Full Text PDF

De novo mutations in protein-coding genes are a well-established cause of developmental disorders. However, genes known to be associated with developmental disorders account for only a minority of the observed excess of such de novo mutations. Here, to identify previously undescribed genes associated with developmental disorders, we integrate healthcare and research exome-sequence data from 31,058 parent-offspring trios of individuals with developmental disorders, and develop a simulation-based statistical test to identify gene-specific enrichment of de novo mutations.

View Article and Find Full Text PDF

Purpose: Somatic variants in tumor necrosis factor receptor-associated factor 7 (TRAF7) cause meningioma, while germline variants have recently been identified in seven patients with developmental delay and cardiac, facial, and digital anomalies. We aimed to define the clinical and mutational spectrum associated with TRAF7 germline variants in a large series of patients, and to determine the molecular effects of the variants through transcriptomic analysis of patient fibroblasts.

Methods: We performed exome, targeted capture, and Sanger sequencing of patients with undiagnosed developmental disorders, in multiple independent diagnostic or research centers.

View Article and Find Full Text PDF
Article Synopsis
  • * A study on 15 pediatric patients with de novo SETD1A variants found these mutations resulted in DNA damage repair issues and hinted at loss-of-function effects, which are vital for understanding the underlying mechanisms of these disorders.
  • * Research using Drosophila demonstrated that the SETD1A gene is necessary for normal memory function in neurons, suggesting its role extends beyond early development to impact cognitive processes in adulthood.
View Article and Find Full Text PDF

Background: The X-chromosome gene USP9X encodes a deubiquitylating enzyme that has been associated with neurodevelopmental disorders primarily in female subjects. USP9X escapes X inactivation, and in female subjects de novo heterozygous copy number loss or truncating mutations cause haploinsufficiency culminating in a recognizable syndrome with intellectual disability and signature brain and congenital abnormalities. In contrast, the involvement of USP9X in male neurodevelopmental disorders remains tentative.

View Article and Find Full Text PDF

The clinical utility of computational phenotyping for both genetic and rare diseases is increasingly appreciated; however, its true potential is yet to be fully realized. Alongside the growing clinical and research availability of sequencing technologies, precise deep and scalable phenotyping is required to serve unmet need in genetic and rare diseases. To improve the lives of individuals affected with rare diseases through deep phenotyping, global big data interrogation is necessary to aid our understanding of disease biology, assist diagnosis, and develop targeted treatment strategies.

View Article and Find Full Text PDF

By using exome sequencing and a gene matching approach, we identified de novo and inherited pathogenic variants in KDM3B in 14 unrelated individuals and three affected parents with varying degrees of intellectual disability (ID) or developmental delay (DD) and short stature. The individuals share additional phenotypic features that include feeding difficulties in infancy, joint hypermobility, and characteristic facial features such as a wide mouth, a pointed chin, long ears, and a low columella. Notably, two individuals developed cancer, acute myeloid leukemia and Hodgkin lymphoma, in childhood.

View Article and Find Full Text PDF

Next-generation sequencing is a powerful tool for the discovery of genes related to neurodevelopmental disorders (NDDs). Here, we report the identification of a distinct syndrome due to de novo or inherited heterozygous mutations in Tousled-like kinase 2 (TLK2) in 38 unrelated individuals and two affected mothers, using whole-exome and whole-genome sequencing technologies, matchmaker databases, and international collaborations. Affected individuals had a consistent phenotype, characterized by mild-borderline neurodevelopmental delay (86%), behavioral disorders (68%), severe gastro-intestinal problems (63%), and facial dysmorphism including blepharophimosis (82%), telecanthus (74%), prominent nasal bridge (68%), broad nasal tip (66%), thin vermilion of the upper lip (62%), and upslanting palpebral fissures (55%).

View Article and Find Full Text PDF

Developmental and epileptic encephalopathies (DEEs) represent a large clinical and genetic heterogeneous group of neurodevelopmental diseases. The identification of pathogenic genetic variants in DEEs remains crucial for deciphering this complex group and for accurately caring for affected individuals (clinical diagnosis, genetic counseling, impacting medical, precision therapy, clinical trials, etc.).

View Article and Find Full Text PDF

PURA syndrome is a recently described developmental encephalopathy presenting with neonatal hypotonia, feeding difficulties, global developmental delay, severe intellectual disability, and frequent apnea and epilepsy. We describe 18 new individuals with heterozygous sequence variations in PURA. A neuromotor disorder starting with neonatal hyptonia, but ultimately allowing delayed progression to walking, was present in nearly all individuals.

View Article and Find Full Text PDF

The Rab GTPase family comprises ∼70 GTP-binding proteins, functioning in vesicle formation, transport and fusion. They are activated by a conformational change induced by GTP-binding, allowing interactions with downstream effectors. Here, we report five individuals with two recurrent de novo missense mutations in RAB11B; c.

View Article and Find Full Text PDF

DHX30 is a member of the family of DExH-box helicases, which use ATP hydrolysis to unwind RNA secondary structures. Here we identified six different de novo missense mutations in DHX30 in twelve unrelated individuals affected by global developmental delay (GDD), intellectual disability (ID), severe speech impairment and gait abnormalities. While four mutations are recurrent, two are unique with one affecting the codon of one recurrent mutation.

View Article and Find Full Text PDF

Background: De novo mutations in have recently been described to cause PURA syndrome, a neurodevelopmental disorder characterised by severe intellectual disability (ID), epilepsy, feeding difficulties and neonatal hypotonia.

Objectives: To delineate the clinical spectrum of PURA syndrome and study genotype-phenotype correlations.

Methods: Diagnostic or research-based exome or Sanger sequencing was performed in individuals with ID.

View Article and Find Full Text PDF

Kleefstra syndrome, caused by haploinsufficiency of euchromatin histone methyltransferase 1 (EHMT1), is characterized by intellectual disability (ID), autism spectrum disorder (ASD), characteristic facial dysmorphisms, and other variable clinical features. In addition to EHMT1 mutations, de novo variants were reported in four additional genes (MBD5, SMARCB1, NR1I3, and KMT2C), in single individuals with clinical characteristics overlapping Kleefstra syndrome. Here, we present a novel cohort of five patients with de novo loss of function mutations affecting the histone methyltransferase KMT2C.

View Article and Find Full Text PDF

RAC1 is a widely studied Rho GTPase, a class of molecules that modulate numerous cellular functions essential for normal development. RAC1 is highly conserved across species and is under strict mutational constraint. We report seven individuals with distinct de novo missense RAC1 mutations and varying degrees of developmental delay, brain malformations, and additional phenotypes.

View Article and Find Full Text PDF

The overall understanding of the molecular etiologies of intellectual disability (ID) and developmental delay (DD) is increasing as next-generation sequencing technologies identify genetic variants in individuals with such disorders. However, detailed analyses conclusively confirming these variants, as well as the underlying molecular mechanisms explaining the diseases, are often lacking. Here, we report on an ID syndrome caused by de novo heterozygous loss-of-function (LoF) mutations in SON.

View Article and Find Full Text PDF

To identify candidate genes for intellectual disability, we performed a meta-analysis on 2,637 de novo mutations, identified from the exomes of 2,104 patient-parent trios. Statistical analyses identified 10 new candidate ID genes: DLG4, PPM1D, RAC1, SMAD6, SON, SOX5, SYNCRIP, TCF20, TLK2 and TRIP12. In addition, we show that these genes are intolerant to nonsynonymous variation and that mutations in these genes are associated with specific clinical ID phenotypes.

View Article and Find Full Text PDF

Mutations in more than a hundred genes have been reported to cause X-linked recessive intellectual disability (ID) mainly in males. In contrast, the number of identified X-linked genes in which de novo mutations specifically cause ID in females is limited. Here, we report 17 females with de novo loss-of-function mutations in USP9X, encoding a highly conserved deubiquitinating enzyme.

View Article and Find Full Text PDF

Recently WAC was reported as a candidate gene for intellectual disability (ID) based on the identification of a de novo mutation in an individual with severe ID. WAC regulates transcription-coupled histone H2B ubiquitination and has previously been implicated in the 10p12p11 contiguous gene deletion syndrome. In this study, we report on 10 individuals with de novo WAC mutations which we identified through routine (diagnostic) exome sequencing and targeted resequencing of WAC in 2326 individuals with unexplained ID.

View Article and Find Full Text PDF

Recently, we marked TRIO for the first time as a candidate gene for intellectual disability (ID). Across diverse vertebrate species, TRIO is a well-conserved Rho GTPase regulator that is highly expressed in the developing brain. However, little is known about the specific events regulated by TRIO during brain development and its clinical impact in humans when mutated.

View Article and Find Full Text PDF