Ann Clin Transl Neurol
July 2025
Objectives: To investigate the consequences of a pathogenic missense variant (c.838C>T; p.L280F) and a 5'-UTR regulatory variant (c.
View Article and Find Full Text PDFStructural variants (SVs) of the nebulin gene (NEB), including intragenic duplications, deletions, and copy number variation of the triplicate region, are an established cause of recessively inherited nemaline myopathies and related neuromuscular disorders. Large deletions have been shown to cause dominantly inherited distal myopathies. Here we provide an overview of 35 families with muscle disorders caused by such SVs in NEB.
View Article and Find Full Text PDFBackground: Congenital myopathies are a group of neuromuscular disorders that typically present at birth or early childhood with hypotonia and non-progressive or slowly progressive muscle weakness. They are classically subclassified by characteristic structural changes and histopathological findings in skeletal muscle. Variants in over 40 genes have been described to date in patients with various forms of congenital myopathy with overlapping phenotypic and histological features, which poses a challenge for laboratories and clinicians in interpreting genetic findings.
View Article and Find Full Text PDFInt J Surg
August 2025
Background: The applicability of the recently reported predictors to predict pain reduction after laparoscopic cholecystectomy (LC) is limited by only predicting short-term outcomes. The aim of this study was to develop and externally validate a model to predict clinically relevant pain reduction 5 years after LC.
Materials And Methods: This study reports on 5-year follow-up data of two multicenter prospective trials in 25 hospitals.
Variants in the mitochondrial genome (mtDNA) cause a diverse collection of mitochondrial diseases and have extensive phenotypic overlap with Mendelian diseases encoded on the nuclear genome. The mtDNA is not always specifically evaluated in patients with suspected Mendelian disease, resulting in overlooked diagnostic variants. Here, we analyzed a cohort of 6,660 rare disease families (5,625 genetically undiagnosed [84%]) from the Genomics Research to Elucidate the Genetics of Rare diseases (GREGoR) Consortium, as well as other rare disease cohorts.
View Article and Find Full Text PDFCollagen VI-related dystrophies manifest with a spectrum of clinical phenotypes, ranging from Ullrich congenital muscular dystrophy (UCMD), presenting with prominent congenital symptoms and characterized by progressive muscle weakness, joint contractures and respiratory insufficiency, to Bethlem muscular dystrophy, with milder symptoms typically recognized later and at times resembling a limb girdle muscular dystrophy, and intermediate phenotypes falling between UCMD and Bethlem muscular dystrophy. Despite clinical and muscle pathology features highly suggestive of collagen VI-related dystrophy, some patients had remained without an identified causative variant in COL6A1, COL6A2 or COL6A3. With combined muscle RNA sequencing and whole-genome sequencing, we uncovered a recurrent, de novo deep intronic variant in intron 11 of COL6A1 (c.
View Article and Find Full Text PDFPurpose: Heterozygous pathogenic variants in SPTAN1 cause a diverse spectrum of neurogenetic disorders ranging from peripheral and central nervous system involvement to complex syndromic presentations. We set out to investigate the role of SPTAN1 in genetically unsolved hereditary myopathies.
Methods: Through international collaboration we identified 14 families with distal weakness and heterozygous SPTAN1 loss-of-function variants.
J Neuromuscul Dis
November 2024
PAX7 is a myogenesis transcription factor important for satellite cell specification and function and thus involved in muscle growth, maintenance, repair and regeneration. Recently, a new autosomal recessive congenital myopathy was described that is caused by biallelic variants in . Our aim is to describe phenotype and whole-body muscle MRI with follow-up imaging findings in a patient with a novel homozygous missense variant in We also compare our patients' imaging features with a patient reported in the initial study, to identify a possible emerging pattern for PAX7-congenital myopathy.
View Article and Find Full Text PDFBiallelic variants in ARL6IP1 are associated with a rare, complicated form of progressive hereditary spastic paraplegia. Among the few cases reported thus far, two distinct phenotypic clusters with upper and lower motor neuron pathology and varying severities have emerged. Here, we describe a proband who presented with decreased fetal movements, intrauterine growth retardation, arthrogryposis multiplex congenita (AMC), dysmorphic features, weakness and hypotonia.
View Article and Find Full Text PDFAnn Clin Transl Neurol
March 2025
Objective: While there have been several reports of patients with dominantly acting COL12A1 variants, few cases of the more severe recessive Collagen XII-related disorders have previously been documented.
Methods: We present detailed clinical, immunocytochemical, and imaging data on eight additional patients from seven families with biallelic pathogenic variants in COL12A1.
Results: All patients presented with a consistent constellation of congenital onset clinical features: hypotonia, dysmorphic features, most notably gingival hypertrophy, prominent distal joint hyperlaxity, with co-occurring contractures of large joints, and variable muscle involvement, evident both clinically and on muscle imaging.
Pathogenic variants in HMGCR were recently linked to a limb-girdle muscular dystrophy (LGMD) phenotype. The protein product HMG CoA reductase (HMGCR) catalyzes a key component of the cholesterol synthesis pathway. The two other muscle diseases associated with HMGCR, statin-associated myopathy (SAM) and autoimmune anti-HMGCR myopathy, are not inherited in a Mendelian pattern.
View Article and Find Full Text PDFIntroduction: Structural variants (SVs) of the nebulin gene (), including intragenic duplications, deletions, and copy number variation of the triplicate region, are an established cause of recessively inherited nemaline myopathies and related neuromuscular disorders. Large deletions have been shown to cause dominantly inherited distal myopathies. Here we provide an overview of 35 families with muscle disorders caused by such SVs in .
View Article and Find Full Text PDFBackground: Variants in the mitochondrial genome (mtDNA) cause a diverse collection of mitochondrial diseases and have extensive phenotypic overlap with Mendelian diseases encoded on the nuclear genome. The mtDNA is often not specifically evaluated in patients with suspected Mendelian disease, resulting in overlooked diagnostic variants.
Methods: Using dedicated pipelines to address the technical challenges posed by the mtDNA - circular genome, variant heteroplasmy, and nuclear misalignment - single nucleotide variants, small indels, and large mtDNA deletions were called from exome and genome sequencing data, in addition to RNA-sequencing when available.
Purpose: We set out to develop a publicly available tool that could accurately diagnose spinal muscular atrophy (SMA) in exome, genome, or panel sequencing data sets aligned to a GRCh37, GRCh38, or T2T reference genome.
Methods: The SMA Finder algorithm detects the most common genetic causes of SMA by evaluating reads that overlap the c.840 position of the SMN1 and SMN2 paralogs.
Biallelic pathogenic variants in the gene encoding nebulin (NEB) are a known cause of congenital myopathy. We present two brothers with congenital myopathy and compound heterozygous variants (NC_000002.12:g.
View Article and Find Full Text PDFJAMA Surg
November 2024
Importance: The 1-year results of the SECURE trial, a randomized trial comparing a restrictive strategy vs usual care for select patients with symptomatic cholelithiasis for cholecystectomy, resulted in a significantly lower operation rate after restrictive strategy. However, a restrictive strategy did not result in more pain-free patients at 1 year.
Objective: To gauge pain level and determine the proportion of pain-free patients, operation rate, and biliary and surgical complications at the 5-year follow-up.
Cytoplasmic and nuclear iron-sulfur (Fe-S) enzymes that are essential for genome maintenance and replication depend on the cytoplasmic Fe-S assembly (CIA) machinery for cluster acquisition. The core of the CIA machinery consists of a complex of CIAO1, MMS19 and FAM96B. The physiological consequences of loss of function in the components of the CIA pathway have thus far remained uncharacterized.
View Article and Find Full Text PDFBackground And Objectives: Omigapil is a small molecule which inhibits the GAPDH-Siah1-mediated apoptosis pathway. Apoptosis is a pathomechanism underlying the congenital muscular dystrophy subtypes LAMA2-related dystrophy (LAMA2-RD) and COL6-related dystrophy (COL6-RD). Studies of omigapil in the (dy/dy) LAMA2-RD mouse model demonstrated improved survival, and studies in the (dy/dy) LAMA2-RD mouse model and the (Col6a1) COL6-RD mouse model demonstrated decreased apoptosis.
View Article and Find Full Text PDFPathogenic variants in were recently linked to a limb-girdle muscular dystrophy (LGMD) phenotype. The protein product HMG CoA reductase (HMGCR) catalyzes a key component of the cholesterol synthesis pathway. The two other muscle diseases associated with HMGCR, statin-associated myopathy (SAM) and autoimmune anti-HMGCR myopathy, are not inherited in a Mendelian pattern.
View Article and Find Full Text PDFIntracellular trafficking involves an intricate machinery of motor complexes, including the dynein complex, to shuttle cargo for autophagolysosomal degradation. Deficiency in dynein axonemal chains, as well as cytoplasmic light and intermediate chains, have been linked with ciliary dyskinesia and skeletal dysplasia. The cytoplasmic dynein 1 heavy chain protein (DYNC1H1) serves as a core complex for retrograde trafficking in neuronal axons.
View Article and Find Full Text PDFN Engl J Med
June 2024