IEEE Trans Neural Syst Rehabil Eng
September 2024
Training an accurate classifier for EEG-based brain-computer interface (BCI) requires EEG data from a large number of users, whereas protecting their data privacy is a critical consideration. Federated learning (FL) is a promising solution to this challenge. This paper proposes Federated classification with local Batch-specific batch normalization and Sharpness-aware minimization (FedBS) for privacy protection in EEG-based motor imagery (MI) classification.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
April 2024
Objective: An electroencephalogram (EEG) based brain-computer interface (BCI) maps the user's EEG signals into commands for external device control. Usually a large amount of labeled EEG trials are required to train a reliable EEG recognition model. However, acquiring labeled EEG data is time-consuming and user-unfriendly.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
September 2023
A brain-computer interface (BCI) establishes a direct communication pathway between the brain and an external device. Electroencephalogram (EEG) is the most popular input signal in BCIs, due to its convenience and low cost. Most research on EEG-based BCIs focuses on the accurate decoding of EEG signals; however, EEG signals also contain rich private information, e.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
May 2023
Research and development of electroencephalogram (EEG) based brain-computer interfaces (BCIs) have advanced rapidly, partly due to deeper understanding of the brain and wide adoption of sophisticated machine learning approaches for decoding the EEG signals. However, recent studies have shown that machine learning algorithms are vulnerable to adversarial attacks. This paper proposes to use narrow period pulse for poisoning attack of EEG-based BCIs, which makes adversarial attacks much easier to implement.
View Article and Find Full Text PDF. Multiple convolutional neural network (CNN) classifiers have been proposed for electroencephalogram (EEG) based brain-computer interfaces (BCIs). However, CNN models have been found vulnerable to universal adversarial perturbations (UAPs), which are small and example-independent, yet powerful enough to degrade the performance of a CNN model, when added to a benign example.
View Article and Find Full Text PDF