Biosens Bioelectron
August 2025
Single-nucleotide polymorphism (SNP) detection is critical for precision medicine but is often hindered by complex workflows in resource-limited settings. Here, we introduce Smart-SNPer (https://smart-crisprer.com), a one-click, structure-guided crRNA design tool that automates the development of highly specific RPA (Recombinase Polymerase Amplification)-Cas12a assays (CORDSv2).
View Article and Find Full Text PDFAims: This study aimed to examine the differences in bone induction and osseointegration performance of acellular extracellular matrix bone at different sites.
Methods: We decellularized bone from bovine epiphysis near the marrow cavity (NMC), the middle of the cancellous bone (MCB), and near the cartilage (NC). The characterization, physicochemical properties, and effectiveness of the decellularization process of decellularized extracellular matrix (dECM) were analyzed.
Adv Mater
February 2025
3D printed titanium scaffold has promising applications in orthopedics. However, the bioinert titanium presents challenges for promoting vascularization and tissue growth within the porous scaffold for stable osteointegration. In this study, a modular porous titanium scaffold is created using 3D printing and a gradient-surface strategy to immobilize QK peptide on the surface with a bi-directional gradient distribution.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
The CRISPR/Cas13 system has garnered attention as a potential tool for RNA editing. However, the degree of collateral activity among various Cas13 orthologs and their cytotoxic effects in mammalian cells remain contentious, potentially impacting their applications. In this study, we observed differential collateral activities for LwaCas13a and RfxCas13d in 293T and U87 cells by applying both sensitive dual-fluorescence (mRuby/GFP) reporter and quantifiable dual-luciferase (Fluc/Rluc) reporter, with LwaCas13a displaying notable activity contrary to previous reports.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2024
Long-lasting, controlled-release, and minimally invasive injectable platforms that provide a stable blood concentration to promote bone regeneration are less well developed. Using hexagonal mesoporous silica (HMS) loaded with dexamethasone (DEX) and poly(lactic--glycolic acid) (PLGA), we prepared porous DEX/HMS/PLGA microspheres (PDHP). In contrast to HMS/PLGA microspheres (HP), porous HMS/PLGA microspheres (PHP), DEX/PLGA microspheres (DP), and DEX/HMS/PLGA microspheres (DHP), PDHP showed notable immuno-coordinated osteogenic capabilities and were best at promoting bone mesenchymal stem cell proliferation and osteogenic differentiation.
View Article and Find Full Text PDFMitochondrial network architecture, which is closely related to mitochondrial function, is mechanically sensitive and regulated by multiple stimuli. However, the effects of microtopographic cues on mitochondria remain poorly defined. Herein, polycaprolactone (PCL) surfaces were used as models to investigate how micropatterns regulate mitochondrial network architecture and function in rat adipose-derived stem cells (rASCs).
View Article and Find Full Text PDFACS Appl Bio Mater
December 2023
Semisolid powder molding was used to prepare the medical Mg-6Zn alloy; in order to further improve its degradation adaptability, 0.5 and 1 wt % Mn were added. Then, the effect of the forming temperature (540, 560, 580, and 600 °C) on the degradation behavior of the prepared Mg-6Zn-Mn ( = 0.
View Article and Find Full Text PDFMacrophages are important immune effector cells which participate various physiological and pathological conditions. Numerous studies have demonstrated the regulation of macrophage phenotype by micropatterns. It is well accepted that micropatterns affect cellular behaviors through changing cell shape and modulating the associated mechanical sensors on the plasma membrane and cytoskeleton.
View Article and Find Full Text PDFZhongguo Yi Liao Qi Xie Za Zhi
May 2023
ACS Appl Bio Mater
May 2022
Magnesium (Mg) alloys as implant materials with excellent biodegradation ability have promising clinical applications for tissue repair and restoration. Although the corrosion processes of Mg alloys in biophysiological media are closely related with their biodegradation ability, only limited methods have been developed for characterization of their corrosion processes, including electrochemical analysis, weight loss measurement, and hydrogen evolution analysis. Moreover, these methods suffer from drawbacks of poor spatiotemporal resolution, static observation, and tedious operation.
View Article and Find Full Text PDFOsteopontin (OPN) is an important protein for mediating cell behaviour on biomaterials. However, the interactions between the chemical groups on the biomaterial surface and OPN still need to be further clarified, which has restricted the application of OPN in biomaterial functionalization. In the present study, we developed different self-assembled monolayers (SAMs) with specific chemical groups, including SAMs-OH, SAMs-OEG, SAMs-COOH, SAMs-NH, and SAMs-POH, to study the behavior of OPN on these SAMs.
View Article and Find Full Text PDFCalcium phosphate bio-ceramics are osteo-conductive, but it remains a challenge to promote the induction of bone augmentation and capillary formation. The surface micro/nano-topography of materials can be recognized by cells and then the cell fate are mediated. Traditional regulation methods of carving surface structures on bio-ceramics employ mineral reagents and organic additives, which might introduce impurity phases and affect the biological results.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2022
Electrical stimulation as a useful and simple method attracts a lot of attention due to its potential to influence cell behaviors. Reports on the change of cell interior structures and membrane under electrical field would be the possible mechanisms. However, changes in cell behavior caused by protein adsorption under different electric field has not been noticed and discussed yet.
View Article and Find Full Text PDFGlyphosate, a common broad-spectrum herbicide, is a serious environmental pollutant that causes a significant threat to humans. Hence, there is a pressing task to remove glyphosate from the environment. Here, we report an excellent FeCeO catalyst synthesized via the one-step co-precipitation method for activating peroxymonosulfate (PMS) to degrade glyphosate at 25 °C.
View Article and Find Full Text PDFFibronectin (Fn) is significant to the performance of biomaterials, and the chemistry of biomaterial surface play important roles in Fn adsorption and subsequent cell behavior. However, the "molecular scale" mechanism is still unclear. Herein, we combined experimental strategies with molecular simulations to solve this problem.
View Article and Find Full Text PDFAlthough antimicrobial titanium implants can prevent biomaterial-associated infection (BAI) in orthopedics, they display cytotoxicity and delayed osseointegration. Therefore, versatile implants are desirable for simultaneously inhibiting BAI and promoting osseointegration, especially "statically-versatile" ones with nonessential external stimulations for facilitating applications. Herein, we develop a "statically-versatile" titanium implant by immobilizing an innovative fusion peptide (FP) containing HHC36 antimicrobial sequence and QK angiogenic sequence via sodium borohydride reduction promoted Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC-SB), which shows higher immobilization efficiency than traditional CuAAC with sodium ascorbate reduction (CuAAC-SA).
View Article and Find Full Text PDFNeurotoxicology
December 2020
Methamphetamine (METH) exposure reportedly promotes microglial activation and pro-inflammatory cytokines secretion. Sustained inflammation in abusers of psychostimulant drugs further induces neural damage. Cholecystokinin-8 (CCK-8) is a gut-brain peptide which exerts a wide range of biological activities in the gastrointestinal tract and central nervous system.
View Article and Find Full Text PDFSurface topography and chemical characteristics can regulate stem cell proliferation and differentiation, and decrease the bone-healing time. However, the synergetic function of the surface structure and chemical cues in bone-regeneration repair was rarely studied. Herein, a strontium ion (Sr)-substituted surface hydroxyapatite (HA) hexagon-like microarray was successfully constructed on 3D-plotted HA porous scaffold through hydrothermal reaction to generate topography and chemical dual cues.
View Article and Find Full Text PDFBiomaterial surface chemistry engenders profound consequences on cell adhesion and the ultimate tissue response by adsorbing proteins from extracellular matrix, where vitronectin (Vn) is involved as one of the crucial mediator proteins. Deciphering the adsorption behaviors of Vn in molecular scale provides a useful account of how to design biomaterial surfaces. But the details of structural dynamics and consequential biological effect remain elusive.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2020
Humidity sensors have been widely used for humidity monitoring in industrial fields, while the unsatisfactory flexibility, time consumption, and expensive integration process of conventional inorganic sensors significantly limit their application in wearable electronics. Using paper-based humidity sensors is considered a feasible method to overcome these drawbacks because of their good flexibility and roll-to-roll manufacturability, while they still face problems such as poor durability and low sensitivity. In this study, we report a high-performance paper-based humidity sensor based on a rationally designed bilayered structure consisting of a nanoporous cellulose nanofiber/carbon nanotube (CNF/CNT) sensitive layer and a microporous paper substrate.
View Article and Find Full Text PDFNatural polysaccharides and proteins have been widely explored for the preparation of hydrogel matrices due to their promising biocompatibility and biodegradability. However, it is challenging to achieve multiple functions of the hydrophilic matrix through convenient functionalization strategies. Herein we report the facile engineering of a natural matrix with black phosphorus (BP) nanosheets as building blocks to generate a therapeutic nanocomposite hydrogel (BP/Gel) with an array of promising features.
View Article and Find Full Text PDFStudies demonstrated that cholecystokinin (CCK) system involved in morphine dependence and withdrawal. Our previous study showed that endogenous CCK system were up-regulated after chronic morphine exposure. Additionally, CCK1 receptor significantly blocked the inhibitory effect of exogenous CCK-8 on morphine dependence, but CCK2 receptor appears to be necessary for low concentrations of endogenous CCK to potentiate morphine dependence.
View Article and Find Full Text PDFThe orientation and conformation of adhesive proteins after adsorption play a central role in cell-binding bioactivity. Fibronectin (Fn) holds two peptide sequences that favor cell adhesion: the Arg-Gly-Asp (RGD) loop on the tenth type-III domain (Fn-III) and the Pro-His-Ser-Arg-Asn (PHSRN) synergy site on the ninth type-III domain (Fn-III). Herein, adsorption of Fn fragments (Fn-III and Fn-III) on self-assembled monolayers (SAMs) carrying various functional groups (-COOH, -NH, -CH, and -OH) was investigated by the Monte Carlo method and molecular dynamics simulation in order to understand its mediation effect on cell adhesion.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2018
It is still a challenge to achieve both excellent mechanical strength and biocompatibility in hydrogels. In this study, we exploited two interactions to form a novel biocompatible, slicing-resistant, and self-healing hydrogel. The first was molecular host-guest recognition between a host (isocyanatoethyl acrylate modified β-cyclodextrin) and a guest (2-(2-(2-(2-(adamantyl-1-oxy)ethoxy)ethoxy)ethoxy)ethanol acrylate) to form "three-arm" host-guest supramolecules (HGSMs), and the second was covalent bonding between HGSMs (achieved by UV-initiated polymerization) to form strong cross-links in the hydrogel.
View Article and Find Full Text PDFOsteopontin (OPN) is a key mediator of cell interactions with biomaterials. However, few studies have been dedicated to studying cell adhesion on OPN-adsorbed substrates with controlled charge and wettability. Here, amino-carboxyl (NH/COOH) and hydroxyl-methyl (OH/CH) mixed self-assembled monolayers (SAMs) of varying charges and wettability, respectively, were used as controllable model surfaces to study OPN adsorption and subsequent mesenchymal stem cell (MSC) adhesion.
View Article and Find Full Text PDF