Cancer Gene Ther
August 2025
Chromophobe renal cell carcinoma (ChRCC) is the third most common subtype of kidney cancer, with limited therapeutic options. Using BH3 profiling to screen ChRCC-derived cell lines, we discovered that BH3 peptides targeting BCL-xL promote apoptosis in ChRCC. Downregulation of BCL2L1 is sufficient to induce apoptosis in ChRCC-derived cells, consistent with our screening results.
View Article and Find Full Text PDFOncogenic KRAS induces metabolic rewiring in pancreatic ductal adenocarcinoma (PDAC) characterized, in part, by dependency on de novo pyrimidine biosynthesis. Pharmacologic inhibition of dihydroorotate dehydrogenase (DHODH), an enzyme in the de novo pyrimidine synthesis pathway, delays pancreatic tumor growth; however, limited monotherapy efficacy suggests that compensatory pathways may drive resistance. Here, we use an integrated metabolomic, proteomic and in vitro and in vivo DHODH inhibitor-anchored genetic screening approach to identify compensatory pathways to DHODH inhibition (DHODHi) and targets for combination therapy strategies.
View Article and Find Full Text PDFPaclitaxel and other microtubule-targeting agents are cornerstone therapies for diverse cancers, including lung, breast, cervical, pancreatic, and ovarian malignancies. Paclitaxel induces tumor cell apoptosis during mitosis by disrupting microtubule dynamics required for chromosome segregation. However, despite initial responsiveness, many tumors develop resistance, limiting therapeutic durability.
View Article and Find Full Text PDFAlveolar AT1 and AT2 cells are vital for lung gas exchange and become compromised in several diseases. While key differentiation signals are known, their emergence and fate plasticity are unclear. Here we show in the embryonic lung that single AT2s emerge at intermediate zones, extrude, and connect with nearby epithelium via interlumenal junctioning.
View Article and Find Full Text PDFNat Rev Mol Cell Biol
July 2025
Historically, mammalian caspases (a group of cysteine proteases) have been catalogued into two main families based on major biological function: inflammatory caspases and apoptotic caspases. Accumulating evidence from preclinical models, however, argues against such a clearcut distinction, for two main reasons. First, at least in mammals, apoptotic caspases are generally dispensable for cells to succumb to apoptotic stimuli but instead regulate the kinetic and microenvironmental manifestations of the cellular demise in the context of a complex interplay with other cell death pathways.
View Article and Find Full Text PDFInhibitors of murine double minute homolog 2 (MDM2) represent a promising therapeutic approach for the treatment of wild-type glioblastomas (GBMs), reactivating p53 signaling to induce cancer cell death. We conducted a surgical window-of-opportunity trial (NCT03107780) of the MDM2 inhibitor navtemadlin (KRT-232) in 21 patients with wild-type recurrent GBM to determine achievable drug concentrations within tumor tissues and biological mechanisms of response and resistance. Participants received navtemadlin at 120 mg ( = 10) or 240 mg ( = 11) for 2 days before surgical resection and after surgery until progression or unacceptable toxicity.
View Article and Find Full Text PDFCellular and organismal aging have been consistently associated with mitochondrial dysfunction and inflammation. Accumulating evidence indicates that aging-related inflammatory responses are mechanistically linked to compromised mitochondrial integrity coupled with mtDNA-driven CGAS activation, a process that is tonically inhibited by mitophagy.
View Article and Find Full Text PDFA common approach for understanding how drugs induce their therapeutic effects is to identify the genetic determinants of drug sensitivity. Because 'chemo-genetic profiles' are performed in a pooled format, inference of gene function is subject to several confounding influences related to variation in growth rates between clones. In this study, we developed Method for Evaluating Death Using a Simulation-assisted Approach (MEDUSA), which uses time-resolved measurements, along with model-driven constraints, to reveal the combination of growth and death rates that generated the observed drug response.
View Article and Find Full Text PDFCristae membrane state plays a central role in regulating mitochondrial function and cellular metabolism. The protein Optic atrophy 1 (Opa1) is an important crista remodeler that exists as two forms in the mitochondrion, a membrane-anchored long form (l-Opa1) and a processed short form (s-Opa1). The mechanisms for how Opa1 influences cristae shape have remained unclear due to lack of native three-dimensional views of cristae.
View Article and Find Full Text PDFEnvironmental exposures are linked to diseases of high public health concern, including cancer, neurodegenerative disorders, and autoimmunity. These diseases are caused by excessive or insufficient cell death, prompting investigation of mechanistic links between environmental toxicants and dysregulation of cell death pathways, including apoptosis. This review describes how legacy and emerging environmental exposures target the intrinsic apoptosis pathway to potentially drive pathogenesis.
View Article and Find Full Text PDFThe introduction of magnetic resonance (MR)-guided radiation treatment planning has opened a new space for theranostic nanoparticles to reduce acute toxicity while improving local control. In this work, second-generation AGuIX nanoparticles (AGuIX-Bi) are synthesized and validated. AGuIX-Bi are shown to maintain MR positive contrast while further amplifying the radiation dose by the replacement of some Gd cations with higher Z Bi.
View Article and Find Full Text PDFUnlabelled: Although external beam radiotherapy (xRT) is commonly used to treat central nervous system (CNS) tumors in patients of all ages, young children treated with xRT frequently experience life-altering and dose-limiting neurocognitive impairment (NI) while adults do not. The lack of understanding of mechanisms responsible for these differences has impeded the development of neuroprotective treatments. Using a newly developed mouse model of xRT-induced NI, we found that neurocognitive function is impaired by ionizing radiation in a dose- and age-dependent manner, with the youngest animals being most affected.
View Article and Find Full Text PDFTrends Cancer
February 2023
The intrinsic apoptosis pathway is controlled by the BCL-2 family of proteins. Although the pro-survival members of this family can help cancer cells evade apoptosis, they may also produce apoptotic vulnerabilities that can potentially be exploited therapeutically. Apoptotic vulnerabilities can be driven by endogenous factors including altered genetics, signaling, metabolism, structure and lineage or differentiation state as well as imposed factors, the most prominent being exposure to anti-cancer agents.
View Article and Find Full Text PDFCell Death Differ
May 2023
Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions.
View Article and Find Full Text PDFDNA damage can activate apoptotic and non-apoptotic forms of cell death; however, it remains unclear what features dictate which type of cell death is activated. We report that p53 controls the choice between apoptotic and non-apoptotic death following exposure to DNA damage. In contrast to the conventional model, which suggests that p53-deficient cells should be resistant to DNA damage-induced cell death, we find that p53-deficient cells die at high rates following DNA damage, but exclusively using non-apoptotic mechanisms.
View Article and Find Full Text PDFCristae membrane state plays a central role in regulating mitochondrial function and cellular metabolism. The protein Optic atrophy 1 (Opa1) is an important crista remodeler that exists as two forms in the mitochondrion, a membrane-anchored long form (l-Opa1) and a processed short form (s-Opa1). The mechanisms for how Opa1 influences cristae shape have remained unclear due to lack of native three-dimensional views of cristae.
View Article and Find Full Text PDFmTORC1 is aberrantly activated in cancer and in the genetic tumor syndrome tuberous sclerosis complex (TSC), which is caused by loss-of-function mutations in the TSC complex, a negative regulator of mTORC1. Clinically approved mTORC1 inhibitors, such as rapamycin, elicit a cytostatic effect that fails to eliminate tumors and is rapidly reversible. We sought to determine the effects of mTORC1 on the core regulators of intrinsic apoptosis.
View Article and Find Full Text PDFAlthough major organ toxicities frequently arise in patients treated with cytotoxic or targeted cancer therapies, the mechanisms that drive them are poorly understood. Here, we report that vascular endothelial cells (ECs) are more highly primed for apoptosis than parenchymal cells across many adult tissues. Consequently, ECs readily undergo apoptosis in response to many commonly used anticancer agents including cytotoxic and targeted drugs and are more sensitive to ionizing radiation and BH3 mimetics than parenchymal cells in vivo.
View Article and Find Full Text PDFImmunoglobulin light chain (AL) amyloidosis is an incurable hematologic disorder typically characterized by the production of amyloidogenic light chains by clonal plasma cells. These light chains misfold and aggregate in healthy tissues as amyloid fibrils, leading to life-threatening multi-organ dysfunction. Here we show that the clonal plasma cells in AL amyloidosis are highly primed to undergo apoptosis and dependent on pro-survival proteins MCL-1 and BCL-2.
View Article and Find Full Text PDFPurpose: Advanced/metastatic forms of clear-cell renal cell carcinomas (ccRCC) have limited therapeutic options. Genome-wide genetic screens have identified cellular dependencies in many cancers. Using the Broad Institute/Novartis combined short hairpin RNA (shRNA) dataset, and cross-validation with the CRISPR/Cas9 DepMap (21Q3) dataset, we sought therapeutically actionable dependencies in kidney lineage cancers.
View Article and Find Full Text PDFNovel coronavirus disease 2019 (COVID-19) severity is highly variable, with pediatric patients typically experiencing less severe infection than adults and especially the elderly. The basis for this difference is unclear. We find that mRNA and protein expression of angiotensin-converting enzyme 2 (ACE2), the cell entry receptor for the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19, increases with advancing age in distal lung epithelial cells.
View Article and Find Full Text PDFCancer cells have differential metabolic dependencies compared to their nonmalignant counterparts. However, few metabolism-targeting compounds have been successful in clinical trials. Here, we investigated the metabolic vulnerabilities of triple-negative breast cancer (TNBC), particularly those metabolic perturbations that increased mitochondrial apoptotic priming and sensitivity to BH3 mimetics (drugs that antagonize antiapoptotic proteins).
View Article and Find Full Text PDF