Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A common approach for understanding how drugs induce their therapeutic effects is to identify the genetic determinants of drug sensitivity. Because 'chemo-genetic profiles' are performed in a pooled format, inference of gene function is subject to several confounding influences related to variation in growth rates between clones. In this study, we developed Method for Evaluating Death Using a Simulation-assisted Approach (MEDUSA), which uses time-resolved measurements, along with model-driven constraints, to reveal the combination of growth and death rates that generated the observed drug response. MEDUSA is uniquely effective at identifying death regulatory genes. We apply MEDUSA to characterize DNA damage-induced lethality in the presence and absence of p53. Loss of p53 switches the mechanism of DNA damage-induced death from apoptosis to a non-apoptotic death that requires high respiration. These findings demonstrate the utility of MEDUSA both for determining the genetic dependencies of lethality and for revealing opportunities to potentiate chemo-efficacy in a cancer-specific manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393183PMC
http://dx.doi.org/10.1038/s41589-024-01584-7DOI Listing

Publication Analysis

Top Keywords

dna damage-induced
8
death
6
functional genomic
4
genomic screens
4
screens death
4
death rate
4
rate analyses
4
analyses reveal
4
reveal mechanisms
4
mechanisms drug
4

Similar Publications

Anaphase-promoting complex/cyclosome (APC/C) regulates the cell cycle by destruction of target proteins ubiquitination. However, understanding the control of APC/C has remained elusive. We identify APC2, the catalytic core subunit of APC/C, as a binding partner of active regulator of SIRT1 (AROS).

View Article and Find Full Text PDF

This study aimed to explore the mechanisms and molecular targets of total flavones of Abelmoschus manihot(TFA) plus empagliflozin(EM) in attenuating diabetic tubulopathy(DT) by targeting mitochondrial homeostasis and pyroptosis-apoptosis-necroptosis(PANoptosis). In the in vivo study, the authors established the DT rat models through a combination of uninephrectomy, administration of streptozotocin via intraperitoneal injections, and exposure to a high-fat diet. Following modeling successfully, the DT rat models received either TFA, EM, TFA+EM, or saline(as a vehicle) by gavage for eight weeks, respectively.

View Article and Find Full Text PDF

The present novel trial assesses the prophylactic influence of ZnO NPs in comparison to silymarin against liver damage induced by acetaminophen (APAP). Forty albino rats were allocated into 4 groups (n = `10 rats/ group). Group I (Control), was orally administered 0.

View Article and Find Full Text PDF

The DNA Damage Response (DDR) is a highly regulated process that safeguards genomic integrity against DNA lesions. Increasing evidence supports a reciprocal relationship between damaged chromatin architecture and the signalling pathways that coordinate the DDR. However, the mechanisms underlying this interplay in response to transcription-blocking DNA lesions remain largely unexplored.

View Article and Find Full Text PDF

Caliban, the Drosophila ortholog of human Nuclear export mediator factor (NEMF), is a recently identified regulator of the intrinsic apoptotic signaling pathway in response to DNA damage; however, the mechanism governing its expression after DNA damage remains unclear. In this study, we demonstrated that DNA damage upregulated caliban expression concomitant with p53 activation. Over-expression of p53 upregulated the mRNA and protein levels of caliban.

View Article and Find Full Text PDF