Endogenous and imposed determinants of apoptotic vulnerabilities in cancer.

Trends Cancer

Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.

Published: February 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The intrinsic apoptosis pathway is controlled by the BCL-2 family of proteins. Although the pro-survival members of this family can help cancer cells evade apoptosis, they may also produce apoptotic vulnerabilities that can potentially be exploited therapeutically. Apoptotic vulnerabilities can be driven by endogenous factors including altered genetics, signaling, metabolism, structure and lineage or differentiation state as well as imposed factors, the most prominent being exposure to anti-cancer agents. The recent development of BH3 mimetics that inhibit pro-survival BCL-2 family proteins has allowed these apoptotic vulnerabilities to be targeted with demonstrable clinical success. Here, we review the key concepts that are vital for understanding, uncovering, and exploiting apoptotic vulnerabilities in cancer for the potential improvement of patient outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241480PMC
http://dx.doi.org/10.1016/j.trecan.2022.10.004DOI Listing

Publication Analysis

Top Keywords

apoptotic vulnerabilities
20
vulnerabilities cancer
8
bcl-2 family
8
family proteins
8
apoptotic
5
vulnerabilities
5
endogenous imposed
4
imposed determinants
4
determinants apoptotic
4
cancer intrinsic
4

Similar Publications

The intrinsic ability of cancer cells to evade death underpins tumorigenesis, progression, metastasis and the survival of drug-tolerant persister (DTP) cells. Herein, we discovered that when activated, the small GTPase ARF6 plays a central role in tumor survival by facilitating expression of the BRAF oncoprotein. Tumor-specific deletion caused a significant reduction in BRAF protein and MAPK signaling and prevented rapid tumor progression.

View Article and Find Full Text PDF

Living on the Edge: ROS Homeostasis in Cancer Cells and Its Potential as a Therapeutic Target.

Antioxidants (Basel)

August 2025

Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany.

Reactive oxygen species (ROS) act as double-edged swords in cancer biology-facilitating tumor growth, survival, and metastasis at moderate levels while inducing oxidative damage and cell death when exceeding cellular buffering capacity. To survive under chronic oxidative stress, cancer cells rely on robust antioxidant systems such as the glutathione (GSH) and thioredoxin (Trx), and superoxide dismutases (SODs). These systems maintain redox homeostasis and sustain ROS-sensitive signaling pathways including MAPK/ERK, PI3K/Akt/mTOR, NF-κB, STAT3, and HIF-1α.

View Article and Find Full Text PDF

The Chinese hamster ovary (CHO) cell is the most representative mammalian cell protein expression system, and it is widely used in recombinant protein, vaccine and other biopharmaceutical fields. However, due to its vulnerability to environmental factors, apoptosis, and metabolic inhibitors, CHO cells demonstrate poor robustness, and thus the integrated viable cell density and unit cell productivity are largely limited. To improve the robustness and foreign protein expression efficiency of CHO cells, we employed CRISPR/Cas9 to knock out the apoptosis genes and and the lactate dehydrogenase gene , thereby blocking apoptosis and lactic acid metabolism pathways.

View Article and Find Full Text PDF

Deep adversarial learning identifies ADHD-specific associations between apoptotic genes and white matter microstructure in frontal-striatum-cerebellum circuit.

Transl Psychiatry

August 2025

Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital), Beijing Key Laboratory for Big Data Innovative Application of Child and Adolescent Mental Disorders; NHC Key Laboratory of Menta

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by genetic predisposition and alterations in brain structural connectivity. While existing studies have established associations between genetic variants and neuroanatomical features, the specific relationships in ADHD remained poorly understood. To address this gap, we developed adversarial deep canonical correlation analysis models (A-DCCA) to disentangle ADHD-specific and non-specific "gene-white matter" association patterns.

View Article and Find Full Text PDF

Background: Lipid homeostasis is critical for pancreatic adenocarcinoma (PDAC) cell survival under hypoxic and nutrient-deprived conditions. Hypoxia inhibits unsaturated lipid biosynthesis, compelling cancer cells to depend on exogenous unsaturated lipids to counteract saturated lipid-induced toxicity. Our previous work revealed that cancer-associated fibroblasts (CAFs) secrete unsaturated lipids, primarily lysophosphatidylcholines (LPCs), to alleviate lipotoxic stress in PDAC cells.

View Article and Find Full Text PDF